期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A critical assessment of the roles of water molecules and solvated ions in acid-base-catalyzed reactions at solid-water interfaces
1
作者 Xugang Yang zonghui liu +2 位作者 Guoliang Wei Yu Gu Hui Shi 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第8期1964-1990,共27页
Solid-aqueous interfaces and phenomena occurring at those interfaces are ubiquitously found in a plethora of chemical systems.When it comes to heterogeneous catalysis,however,our understanding of chemical transformati... Solid-aqueous interfaces and phenomena occurring at those interfaces are ubiquitously found in a plethora of chemical systems.When it comes to heterogeneous catalysis,however,our understanding of chemical transformations at solid-aqueous interfaces is relatively limited and primitive.This review phenomenologically describes a selection of water-engendered effects on the catalytic behavior for several prototypical acid-base-catalyzed reactions over solid catalysts,and critically assesses the general and special roles of water molecules,structural moieties derived from water,and ionic species that are dissolved in it,with an aim to extract novel concepts and principles that underpin heterogeneous acid-base catalysis in the aqueous phase.For alcohol dehydration catalyzed by solid Bronsted acids,rate inhibition by water is most typically related to the decrease in the acid strength and/or the preferential solvation of adsorbed species over the transition state as water molecules progressively solvate the acid site and form extended networks wherein protons are mobilized.Water also inhibits dehydration kinetics over most Lewis acid-base catalysts by competitive adsorption,but a few scattered reports reveal substantial rate enhancements due to the conversion of Lewis acid sites to Brønsted acid sites with higher catalytic activities upon the introduction of water.For aldol condensation on catalysts exposing Lewis acid-base pairs,the addition of water is generally observed to enhance the rate when C–C coupling is rate-limiting,but may result in rate inhibition by site-blocking when the initial unimolecular deprotonation is rate-limiting.Water can also promote aldol condensation on Brønsted acidic catalysts by facilitating inter-site communication between acid sites through hydrogen-bonding interactions.For metallozeolite-catalyzed sugar isomerization in aqueous media,the nucleation and networking of intrapore waters regulated by hydrophilic entities causes characteristic enthalpy-entropy tradeoffs as these water moieties interact with kinetically relevant hydride transfer transition states.The discussed examples collectively highlight the utmost importance of hydrogen-bonding interactions and ionization of covalently bonded surface moieties as the main factors underlying the uniqueness of water-mediated interfacial acid-base chemistries and the associated solvation effects in the aqueous phase or in the presence of water.A perspective is also provided for future research in this vibrant field. 展开更多
关键词 Acid-base catalysis Solid-aqueous interfaces Water Aqueous-phase reaction Hydronium ion Hydrogen-bonding interaction Local ionic strength effect
下载PDF
Analyzing the characterization of pore structures and permeability of diesel contaminated clays under different aging conditions
2
作者 Yeyang CHUN Dong ZHOU +4 位作者 zonghui liu Chenhui liu Tenglong LIANG Dongpo SU Zheng HUANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第8期1264-1280,共17页
In this study,mercury intrusion porosimetry(MIP)and X-ray micro-computed tomography(XRµCT)were used to characterize the pore structures and investigate the permeability characteristics of clay after aging and con... In this study,mercury intrusion porosimetry(MIP)and X-ray micro-computed tomography(XRµCT)were used to characterize the pore structures and investigate the permeability characteristics of clay after aging and contamination with diesel.The results of the MIP tests showed that aging leads to reductions in porosity and average diameter,as well as an increase in tortuosity.The XRµCT analysis yielded consistent results;it showed that aging renders pores more spherical and isotropic and pore surfaces smoother.This weakens the pore connectivity.Micromorphological analysis revealed that aging led to the rearrangement of soil particles,tighter interparticle overlapping,and a reduction in pore space.The combination of MIP and XRµCT provided a comprehensive and reliable characterization of the soil pore structure.An increased diesel content increased the porosity and average diameter and reduced the tortuosity of the pores.Mechanistic analysis showed that aging weakens interparticle cohesion;this causes large agglomerates to break down into smaller agglomerates,resulting in a tighter arrangement and a subsequent reduction in porosity.An increase in diesel content increases the number of large agglomerates and pore spaces between agglomerates,resulting in increased porosity.Both aging and diesel content can weaken the permeation characteristics of soil. 展开更多
关键词 MIP XRµCT AGING diesel content pore structure permeability characteristics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部