We fully demonstrate the special requirements of a mid-infrared all-optical wavelength converter.The construction mechanism of a 2.05μm all-optical wavelength converter based on the single-wall carbon nanotube[SWCNT]...We fully demonstrate the special requirements of a mid-infrared all-optical wavelength converter.The construction mechanism of a 2.05μm all-optical wavelength converter based on the single-wall carbon nanotube[SWCNT]is proposed.Systematic experiments are carried out,and the converter device is successfully developed.With the assistance of SWCNT-coated microfiber,the conversion efficiency up to-45.57 d B is realized,and the tuning range can reach9.72 nm.The experimental results verify the correctness of the proposed mechanism and the feasibility of the converter device so that it can be a new technical approach for all-optical wavelength conversion beyond 2μm.We believe the research can extend the application of this composite waveguide in the field of all-optical communication.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62005024 and 61975021)Jilin Province Young Scientific and Technological Talents Supporting Project(No.QT202104)+1 种基金Research Project of Jilin Provincial Education Department(No.JJKH20210816KJ)Natural Science Foundation of Jilin Province(Nos.YDZJ202101ZYTS139 and 20190201271JC)。
文摘We fully demonstrate the special requirements of a mid-infrared all-optical wavelength converter.The construction mechanism of a 2.05μm all-optical wavelength converter based on the single-wall carbon nanotube[SWCNT]is proposed.Systematic experiments are carried out,and the converter device is successfully developed.With the assistance of SWCNT-coated microfiber,the conversion efficiency up to-45.57 d B is realized,and the tuning range can reach9.72 nm.The experimental results verify the correctness of the proposed mechanism and the feasibility of the converter device so that it can be a new technical approach for all-optical wavelength conversion beyond 2μm.We believe the research can extend the application of this composite waveguide in the field of all-optical communication.