The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional the...The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants.展开更多
The oxide dispersion strengthened Mo alloys(ODS-Mo)prepared by traditional ball milling and subsequent sintering technique generally possess comparatively coarse Mo grains and large oxide particles at Mo grain boundar...The oxide dispersion strengthened Mo alloys(ODS-Mo)prepared by traditional ball milling and subsequent sintering technique generally possess comparatively coarse Mo grains and large oxide particles at Mo grain boundaries(GBs),which obviously suppress the corresponding strengthening effect of oxide addition.In this work,the Y_(2)O_(3) and TiC particles were simultaneously doped into Mo alloys using ball-milling and subsequent low temperature sintering.Accompanied by TiC addition,the Mo-Y_(2)O_(3) grains are sharply refined from 3.12 to 1.36μm.In particular,Y_(2)O_(3) and TiC can form smaller Y-Ti-O-C quaternary phase particles(~230 nm)at Mo GBs compared to single Y_(2)O_(3) particles(~420 nm),so as to these new formed Y-Ti-O-C particles can more effectively pin and hinder GBs movement.In addition to Y-Ti-O-C particles at GBs,Y_(2)O_(3),TiOx,and TiCx nanoparticles(<100 nm)also exist within Mo grains,which is significantly different from traditional ODS-Mo.The appearance of TiOx phase indicates that some active Ti within TiC can adsorb oxygen impurities of Mo matrix to form a new strengthening phase,thus strengthening and purifying Mo matrix.Furthermore,the pure Mo,Mo-Y_(2)O_(3),and Mo-Y_(2)O_(3)-TiC alloys have similar relative densities(97.4%-98.0%).More importantly,the Mo-Y_(2)O_(3)-TiC alloys exhibit higher hardness(HV0.2(425±25))compared to Mo-Y_(2)O_(3) alloys(HV0.2(370±25)).This work could provide a relevant strategy for the preparation of ultrafine Mo alloys by facile ball-milling.展开更多
Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are ...Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are often required to draw endocardial and epicardial contours of the left ventricle(LV)manually in routine clinical diagnosis or treatment planning period.This task is time-consuming and error-prone.Therefore,it is necessary to develop a fully automated end-to-end semantic segmentation method on cardiac magnetic resonance(CMR)imaging datasets.However,due to the low image quality and the deformation caused by heartbeat,there is no effective tool for fully automated end-to-end cardiac segmentation task.In this work,we propose a multi-scale segmentation network(MSSN)for left ventricle segmentation.It can effectively learn myocardium and blood pool structure representations from 2D short-axis CMR image slices in a multi-scale way.Specifically,our method employs both parallel and serial of dilated convolution layers with different dilation rates to capture multi-scale semantic features.Moreover,we design graduated up-sampling layers with subpixel layers as the decoder to reconstruct lost spatial information and produce accurate segmentation masks.We validated our method using 164 T1 Mapping CMR images and showed that it outperforms the advanced convolutional neural network(CNN)models.In validation metrics,we archived the Dice Similarity Coefficient(DSC)metric of 78.96%.展开更多
Powder metallurgic Ti2 AlNb alloys with W addition are sintered at 900, 1000, 1070 °C,and 1150 °C(i.e., in the O + B2, a_2+ B2 + O, a_2+ B2, and single B2 phase regions, respectively)for 12 h, followed by wa...Powder metallurgic Ti2 AlNb alloys with W addition are sintered at 900, 1000, 1070 °C,and 1150 °C(i.e., in the O + B2, a_2+ B2 + O, a_2+ B2, and single B2 phase regions, respectively)for 12 h, followed by water quenching and furnace cooling. Comparisons of phase and microstructure between quenched and furnace-cooled W-modified alloys are carried out to illustrate the phase transformation and microstructure evolution during the cooling process. Furthermore, a comparison is also made between W-modified and W-free alloys, to reveal the function of the W alloying.W addition accelerates the solutions of a_2 and O phases during the high-temperature holding, and a Widmannsta¨tten B2 + O structure, which contributes to the properties, is induced by furnace cooling from all the phase regions. The Widmannsta¨tten structure includes a B2 matrix, primary O, and secondary O precipitates. However, W alloying refines the Widmannsta¨tten structure only when the alloys are solution-treated and then cooled from the single B2 phase. Although the hardness of the W-modified alloys is lower than that of the W-free alloys sintered in the same phase region, an enhancement of hardness, 489 ± 18 HV, is obtained in the alloy solution-treated in the single B2 phase region for only 0.5 h.展开更多
Fine cellular subgrain structure was formed in the Selective Laser Melting(SLM) manu factured IN718 alloy via optimizing the processing parameters.During the subsequent homogenization heat treatment process,the Laves ...Fine cellular subgrain structure was formed in the Selective Laser Melting(SLM) manu factured IN718 alloy via optimizing the processing parameters.During the subsequent homogenization heat treatment process,the Laves phase dispersed at the subgrain boundaries can be eliminated while the cellular subgrain structure is reserved in the printed samples after holding at 1080℃ for 50 min.With the prolongation of the holding time,the subgrain boundaries undergo low angle rotation via the motion ofdislocation,which leads to the annihilation of the cellular subgrain structure.Moreover,during the subsequent double aging heat treatment process,the reserved cellular subgrain structure in the homogenized samples promotes the precipitation of γ" second phase nanoparticles,and these precipitated γ" phase nanoparticles prefer to distribute at subgrain boundaries.It was found that these unique subgrain boundaries with γ" phase precipitates can hinder but not fully terminate the motion of dislocation during the plastic deformation process,which contributes to increasing the strength as well as holding the stable plastic flow.Hence,the strength and ductility of final prepared IN718 alloy with cellular subgrain microstructure were improved simultaneously compared to the prepared alloy without cellular subgrain structure,which even exceed the mechanical properties standards(AMS 5662) of wrought IN718 alloy.These results in our work suggest that controlling the subgrain structure is a promising effective strategy to improve the mechanical properties of SLM manu factured nickel-based superalloy.展开更多
Y_(2)O_(3)-doped tungsten(W-Y_(2)O_(3))composite powders prepared by a traditional chemical co-precipitation method possess obvious bimodal distribution in size,which would deteriorate their sintering properties.The b...Y_(2)O_(3)-doped tungsten(W-Y_(2)O_(3))composite powders prepared by a traditional chemical co-precipitation method possess obvious bimodal distribution in size,which would deteriorate their sintering properties.The bimodal distribution can be effectively eliminated by an improved chemical co-precipitation method,in which the cationic surfactant cetyltrimethyl-ammonium bromide(CTAB)was innovatively employed.The reduced powders with excellent uniformity have an average grain size of only~31.5 nm.It is noteworthy that Y_(2)O_(3)particles would fuse and grow with the growth of W grains during subsequent spark plasma sintering(SPS)process,which was rarely reported in relevant literature before.On top of that,phase interfaces of sintered W-Y_(2)O_(3)alloys were systematically analyzed.Compared to the intracrystalline oxygen content,the oxygen content at W/Y_(2)O_(3)phase boundaries is relatively higher.It can be found that the(110)crystal planes of W form coherent,semi-coherent,and non-coherent interfaces with different crystal planes of Y_(2)O_(3).The weak interfacial bonding strength between W and Y_(2)O_(3)phases results from relatively more oxygen impurities as well as more semi-coherent/non-coherent interfaces at phase boundaries compared with the inner W grains.展开更多
As an emerging preparation technology,wet chemical method has been employed widely to produce lots of alloy materials such as W and Mo based alloys,owing to its unique technical advantages.Ascertaining the synthesis m...As an emerging preparation technology,wet chemical method has been employed widely to produce lots of alloy materials such as W and Mo based alloys,owing to its unique technical advantages.Ascertaining the synthesis mechanism behind wet chemical method is indispensable for controlled synthesis of highquality W-Y2 O3 composite powder precursor.The co-deposition mechanism of yttrium and tungsten component behind the wet chemical method of preparing yttrium-doped tungsten composite nanopowder was investigated systematically in this work.A series of co-deposited composite powders fabricated under different acidity conditions were used as research targets for investigating the effect of surface composition and structure on co-deposition efficiency.It was found that white tungstic acid has more W-OH bonds and much higher co-deposition efficiency with Y^3+ions than yellow tungstic acid.It is illustrated that the coordination reaction between W-OH bonds on tungstic acid particles and Y^3+ions brings the co-deposition of yttrium and tungsten component into being.Through displacing H^+ions in W-OH bonds,Y^3+ions can be adsorbed on the surface of or incorporated into tungstic acid particles in form of ligand.Consequently,to control and regulate Y2 O3 content in powder precursor accurately,H^+ion concentration in wet chemical reaction should be in range of 0.55-2.82 mol L^-1 to obtain white tungstic acid.Besides,H^+ion concentration also has prominent effect on the grain size and morphology of reduced powder precursor.The optimal value should be around 1.58 mol L^-1,which can lead to minimum W grain size(about 17 nm) without bimodal structure.The chemical mechanism proposed in this work could produce great sense to preparation of high-quality precursor for sintering high-performance Y2 O3 dispersion strengthened W based alloys.Our work may also shed light on the approach to exploit analogous synthesis mechanism in other alloy systems.展开更多
The oxide dispersion strengthened(ODS) steel with the nominal composition of Fe–14 Cr–2 W–0.3 Ti–0.2 V–0.07 Ta–0.3 Y2O3(wt%) was fabricated by mechanical alloying and hot isostatic pressing(HIP). In order to opt...The oxide dispersion strengthened(ODS) steel with the nominal composition of Fe–14 Cr–2 W–0.3 Ti–0.2 V–0.07 Ta–0.3 Y2O3(wt%) was fabricated by mechanical alloying and hot isostatic pressing(HIP). In order to optimize the relative volume fraction of secondary phases, the as-HIPed ODS steel was annealed at 800°C, 1000°C, 1200°C for 5 h, respectively. The microstructures and different secondary phases of the as-HIPed and annealed ODS samples were identified by scanning electron microscopy(SEM), transmission electron microscopy(TEM), and X-ray diffraction(XRD). The tensile properties of all the ODS steels at room temperature were also investigated. The results indicate that annealing is an effective way to control the microstructure and the integral secondary phases. The annealing process promotes the dissolution of M23C6 particles, thus promoting the precipitation of TiC.No obvious coarsening of Y2Ti2O7 nanoparticles can be observed during annealing. The tensile results indicate that the annealed ODS sample with the optimized secondary phases and high density possesses the best mechanical properties.展开更多
In this work,W-Y2 O3 alloys are prepared by freeze-drying and subsequent low temperature sintering.The average size of reduced W-Y2 O3 composite powders prepared by freeze-drying method is only 18.1 nm.After low tempe...In this work,W-Y2 O3 alloys are prepared by freeze-drying and subsequent low temperature sintering.The average size of reduced W-Y2 O3 composite powders prepared by freeze-drying method is only 18.1 nm.After low temperature sintering of these composite nanopowders,the formed W-Y2 O3 alloys possess a smaller grain size of 510 nm while maintaining a comparatively higher density of 97.8%.Besides a few submicron Y2 O3 particles(about 100-300 nm)with a W-Y-O phase diffusion layer on their surface distribute at W grain boundaries,lots of nano Y2 WO6 particles(<20 nm)exist in W matrix.Moreover,many Y6 WO12(<10 nm)particles exist within submicron Y2 O3 particles.The formation of these ternary phases indicates that some oxygen impurities in the W matrix can be adsorbed by ternary phases,resulting in the purification of W matrix and the strengthening of phase boundaries.The combined action of the above factors makes the hardness of the sintered W-Y2 O3 alloys in our work as high as 656.6±39.0 HV0.2.Our work indicates that freeze-drying and subsequent low temperature sintering is a promising method for preparing high performance W-Y2 O3 alloys.展开更多
S31042 heat-resistant steel was joined by linear friction welding (LFW) in this study. The microstructure and the mechanical properties of the LFWed joint were investigated by optical microscopy, scanning electronic...S31042 heat-resistant steel was joined by linear friction welding (LFW) in this study. The microstructure and the mechanical properties of the LFWed joint were investigated by optical microscopy, scanning electronic microscopy, transmission electron microscopy, hardness test and tensile test. A defect-free joint was achieved by using LFW under reasonable welding parameters. The dynamic recrystallization of austenitic grains and the dispersed precipitation of NbCrN particles resulting from the high stress and high temperature in welding, would lead to a improvement of mechanical property of the welded joint. With increasing the distance flom the weld zone to the parent metal, the austenitic grain size gradually increases from -1 μm to - 150 μm, and the microhardness decreases from 301 HV to 225 HV. The tensile strength (about 731 MPa) of the welded joint is comparable to that of the S31042 in the solution-treated state.展开更多
The ultrafine Mo-Y_(2)O_(3)composite powders were successfully synthesized by innovative freeze-drying method.Consequently,the freeze-dried Mo-Y_(2)O_(3)composite powders with high sintering activities possess an aver...The ultrafine Mo-Y_(2)O_(3)composite powders were successfully synthesized by innovative freeze-drying method.Consequently,the freeze-dried Mo-Y_(2)O_(3)composite powders with high sintering activities possess an average grain size of 54 nm.After low temperature sintering at 1600°C,the Mo-Y_(2)O_(3)alloys maintaining a high density(99.6%)have the finest grain size(620 nm)comparing with available literature about oxide dispersion strengthened molybdenum alloy(ODS-Mo).The oxide particles remain their small size(mainly<50 nm)within Mo grains and at Mo grain boundaries.Furthermore,the Y_(5)MO_(2)O_(12)particles were firstly observed within Mo matrix,and its formation can absorb nearby oxygen impurities,which involves the purification of Mo matrix.The mechanical properties show that Mo-Y_(2)O_(3)alloy possess a high hardness of 487±28 HV_(0.2),a high yield strength of 902 MPa,a high compressive strength of1110 MPa,respectively.Our work suggests that freeze-drying and subsequent low temperature sintering can shed light on the preparation of ultrafine ODS-Mo alloys with high performance.展开更多
W-Y2O3 composite nanopowders prepared via wet chemical method exhibit unique morphologies and micro structures.The yttrium addition during chemical reaction process affects not only the composition of tungsten acid hy...W-Y2O3 composite nanopowders prepared via wet chemical method exhibit unique morphologies and micro structures.The yttrium addition during chemical reaction process affects not only the composition of tungsten acid hydrate precursors,but also the reduction property of tungsten oxide transformed from precursors.In this study,the morphology evolution of the samples with and without yttrium during reduction process has been studied,and it is found that the addition of yttrium can exert a strong influence on the reduction route of tungsten oxide and the final morphology of tungsten particles.The cause of the difference of reduction route and tungsten particle morphology is also analyzed.It is suggested that the composition of the samples with yttrium at the beginning of reduction is pure cubic system WO3(c-WO3),and the c-WO3 particles have c-WO3 whiskers attached to the surface.This kind of whiskers is essential for c-WO3 to be reduced directly to tungsten and also helpful to obtain W-Y2O3 powders with small size and good uniformity.展开更多
In the precipitation-hardened Ni-based superalloy,typified by ATI 718 Plus,the nano-scaleγandγphase in duplet or triple coprecipitate morphology can provide superior high-temperature strength.Thus,it is of great sen...In the precipitation-hardened Ni-based superalloy,typified by ATI 718 Plus,the nano-scaleγandγphase in duplet or triple coprecipitate morphology can provide superior high-temperature strength.Thus,it is of great sense to study the evolution ofγ’/γ’’coprecipitate during long term service at elevated temperature.In this study,the new-typeγ’/γ’’coprecipitates with a sandwich or compact configuration were found firstly in wrought ATI 718 Plus superalloy during long term thermal exposure at 705℃.These co-structure of theγ’/γ’’precipitates evidently inhibit the coarsening ofγ’phase.The increase of thermal exposure time evidently leads to the increase of the volume fraction ofγ’/γ’’coprecipitate and transformation of sandwich-typeγ’/γ’’coprecipitate to compact-typeγ’/γ’’coprecipitate,which is characterized asγphase precipitate at several faces of theγphase.The main evolution mechanism ofγ’/γ’’coprecipitates is element segregation,especially the composition variations of Al+Ti and Nb and their ratio of Al+Ti/Nb.In addition,the interfacial energy betweenγ’’phase andγmatrix also plays a key role on theγ’/γ’’coprecipitates evolution.The calculated results show that the longer thermal exposure time leads to the higher interfacial energy,which is beneficial for nucleation and precipitation ofγ’’phase on the faces ofγ’phase.展开更多
Oxide-dispersion-strengthened tungsten(ODS-W)and a Cu Cr Zr alloy were bonded by a three-step process:(i)surface nano-activation,(ii)copper plating followed by annealing,and(iii)diffusion bonding.The morphological and...Oxide-dispersion-strengthened tungsten(ODS-W)and a Cu Cr Zr alloy were bonded by a three-step process:(i)surface nano-activation,(ii)copper plating followed by annealing,and(iii)diffusion bonding.The morphological and structural evolutions of ODS-W and the interface of the ODS-W/CuCrZr joint during these processes have been thoroughly studied by X-ray diffraction,scanning electron microscopy,energy dispersive spectrometry,and high-resolution transmission electron microscopy.After surface nanoactivation,a nanoporous structure of ODS-W with an average pore size of~100 nm was obtained,and the Y_(2)O_(3)particles therein remained unchanged.A Cu coating was tightly bonded with the surface nanoactivated ODS-W after Cu plating and annealing.An interaction layer embedded with nanosized W particles was formed at the interface between ODS-W and plated Cu after the three-step process.Consequently,well-cohesive ODS-W/Cu and ODS-W/Y_(2)O_(3)/Cu interfaces were formed.The ODS-W/Cu Cr Zr joint showed high shear strengths(up to 201 MPa)and effective bonded area ratios(>98%).The developed three-step bonding process between ODS-W and the Cu Cr Zr alloy provides an effective support for future plasma-facing components in nuclear fusion reactor applications.展开更多
With significantly enhanced irradiation resistance,high-temperature strength,and creep resistance,oxide-dispersion-strengthened tungsten(ODS-W)alloys present tremendous potential for high-temperature applications.Howe...With significantly enhanced irradiation resistance,high-temperature strength,and creep resistance,oxide-dispersion-strengthened tungsten(ODS-W)alloys present tremendous potential for high-temperature applications.However,the oxide particles tend to segregate at W grain boundary and grow up(even to micron),greatly suppressing their strengthening effect.It is always a great challenge to effectively refine and disperse the oxide particles at W grain boundary.Here,we successfully developed a new type of cation-doped W-Y2O3 alloy via a wet chemical method and subsequent low-temperature sintering.It was found that proper cation doping could not only significantly refine the intergranular Y2O3 second phase particles but also dramatically improve the sinterability of W matrix.These doping effects,as a result,simultaneously enhance the strength and ductility of the W-Y2O3 alloy.It was confirmed that the segregation of cation dopants at the W/Y2O3 interface is the origin of these doping effects.Furthermore,X-ray photoemission spectra(XPS)analyses confirmed that cation dopant segregation also obviously affects the chemical bonding(i.e.,W–O bond)along the W/Y2O3 interface.As a result,the ratelimiting mechanism for W grain growth is influenced remarkably,explaining well the difference of W grain size in various cation-doped W-Y2O3 alloys.For the refinement of intergranular Y2O3 particles,it can be understood well from both thermodynamic and kinetic views.Detailedly,W/Y2O3 interfacial energy and atom mobility for Y2O3 coarsening are all limited by cation dopant segregation.More importantly,this cation-doping approach can also be applicable to other ODS alloys for enhancing their comprehensive mechanical properties.展开更多
基金financially supported by the National Key R&D Program of China(No.2022YFB3705300)the National Natural Science Foundation of China(Nos.U1960204 and 51974199)the Postdoctoral Fellowship Program of CPSF(No.GZB20230515)。
文摘The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants.
基金financially supported by the National Natural Science Foundation of China (Nos. 52171044 and 51804218)the Innovation and Entrepreneurship Training Program for College Students in Fujian Province, China (No. S202111312029)
文摘The oxide dispersion strengthened Mo alloys(ODS-Mo)prepared by traditional ball milling and subsequent sintering technique generally possess comparatively coarse Mo grains and large oxide particles at Mo grain boundaries(GBs),which obviously suppress the corresponding strengthening effect of oxide addition.In this work,the Y_(2)O_(3) and TiC particles were simultaneously doped into Mo alloys using ball-milling and subsequent low temperature sintering.Accompanied by TiC addition,the Mo-Y_(2)O_(3) grains are sharply refined from 3.12 to 1.36μm.In particular,Y_(2)O_(3) and TiC can form smaller Y-Ti-O-C quaternary phase particles(~230 nm)at Mo GBs compared to single Y_(2)O_(3) particles(~420 nm),so as to these new formed Y-Ti-O-C particles can more effectively pin and hinder GBs movement.In addition to Y-Ti-O-C particles at GBs,Y_(2)O_(3),TiOx,and TiCx nanoparticles(<100 nm)also exist within Mo grains,which is significantly different from traditional ODS-Mo.The appearance of TiOx phase indicates that some active Ti within TiC can adsorb oxygen impurities of Mo matrix to form a new strengthening phase,thus strengthening and purifying Mo matrix.Furthermore,the pure Mo,Mo-Y_(2)O_(3),and Mo-Y_(2)O_(3)-TiC alloys have similar relative densities(97.4%-98.0%).More importantly,the Mo-Y_(2)O_(3)-TiC alloys exhibit higher hardness(HV0.2(425±25))compared to Mo-Y_(2)O_(3) alloys(HV0.2(370±25)).This work could provide a relevant strategy for the preparation of ultrafine Mo alloys by facile ball-milling.
基金This work was supported by the Project of Sichuan Outstanding Young Scientific and Technological Talents(19JCQN0003)the major Project of Education Department in Sichuan(17ZA0063 and 2017JQ0030)+1 种基金in part by the Natural Science Foundation for Young Scientists of CUIT(J201704)the Sichuan Science and Technology Program(2019JDRC0077).
文摘Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are often required to draw endocardial and epicardial contours of the left ventricle(LV)manually in routine clinical diagnosis or treatment planning period.This task is time-consuming and error-prone.Therefore,it is necessary to develop a fully automated end-to-end semantic segmentation method on cardiac magnetic resonance(CMR)imaging datasets.However,due to the low image quality and the deformation caused by heartbeat,there is no effective tool for fully automated end-to-end cardiac segmentation task.In this work,we propose a multi-scale segmentation network(MSSN)for left ventricle segmentation.It can effectively learn myocardium and blood pool structure representations from 2D short-axis CMR image slices in a multi-scale way.Specifically,our method employs both parallel and serial of dilated convolution layers with different dilation rates to capture multi-scale semantic features.Moreover,we design graduated up-sampling layers with subpixel layers as the decoder to reconstruct lost spatial information and produce accurate segmentation masks.We validated our method using 164 T1 Mapping CMR images and showed that it outperforms the advanced convolutional neural network(CNN)models.In validation metrics,we archived the Dice Similarity Coefficient(DSC)metric of 78.96%.
基金the National Natural Science Foundation of China(Grant Nos.51474156 and U1660201)the National High Technology Research and Development Program(‘‘863" Program)of China(Grant No.2015AA042504)for financial support
文摘Powder metallurgic Ti2 AlNb alloys with W addition are sintered at 900, 1000, 1070 °C,and 1150 °C(i.e., in the O + B2, a_2+ B2 + O, a_2+ B2, and single B2 phase regions, respectively)for 12 h, followed by water quenching and furnace cooling. Comparisons of phase and microstructure between quenched and furnace-cooled W-modified alloys are carried out to illustrate the phase transformation and microstructure evolution during the cooling process. Furthermore, a comparison is also made between W-modified and W-free alloys, to reveal the function of the W alloying.W addition accelerates the solutions of a_2 and O phases during the high-temperature holding, and a Widmannsta¨tten B2 + O structure, which contributes to the properties, is induced by furnace cooling from all the phase regions. The Widmannsta¨tten structure includes a B2 matrix, primary O, and secondary O precipitates. However, W alloying refines the Widmannsta¨tten structure only when the alloys are solution-treated and then cooled from the single B2 phase. Although the hardness of the W-modified alloys is lower than that of the W-free alloys sintered in the same phase region, an enhancement of hardness, 489 ± 18 HV, is obtained in the alloy solution-treated in the single B2 phase region for only 0.5 h.
基金National Natural Science Foundation of China (Grant No.51822404 and 51804218)the Science and Technology Program of Tianjin (Grant No.19YFZCGX00790 and 18YFZCGX00070)+1 种基金supported by the Natural Science Foundation of Tianjin (Grant No.18JCYBJC17900)the Seed Foundation of Tianjin University (2018XRX-0005)。
文摘Fine cellular subgrain structure was formed in the Selective Laser Melting(SLM) manu factured IN718 alloy via optimizing the processing parameters.During the subsequent homogenization heat treatment process,the Laves phase dispersed at the subgrain boundaries can be eliminated while the cellular subgrain structure is reserved in the printed samples after holding at 1080℃ for 50 min.With the prolongation of the holding time,the subgrain boundaries undergo low angle rotation via the motion ofdislocation,which leads to the annihilation of the cellular subgrain structure.Moreover,during the subsequent double aging heat treatment process,the reserved cellular subgrain structure in the homogenized samples promotes the precipitation of γ" second phase nanoparticles,and these precipitated γ" phase nanoparticles prefer to distribute at subgrain boundaries.It was found that these unique subgrain boundaries with γ" phase precipitates can hinder but not fully terminate the motion of dislocation during the plastic deformation process,which contributes to increasing the strength as well as holding the stable plastic flow.Hence,the strength and ductility of final prepared IN718 alloy with cellular subgrain microstructure were improved simultaneously compared to the prepared alloy without cellular subgrain structure,which even exceed the mechanical properties standards(AMS 5662) of wrought IN718 alloy.These results in our work suggest that controlling the subgrain structure is a promising effective strategy to improve the mechanical properties of SLM manu factured nickel-based superalloy.
基金the National Natural Science Foundation of China(Grant Nos.51822404 and 51574178)the Science and Technology Program of Tianjin(Grant No.18YFZCGX00070)+1 种基金the Natural Science Foundation of Tianjin(Grant No.18JCYBJC17900)the Seed Foundation of Tianjin University(Grant Nos.2018XRX-0005 and 2019XYF-0066).
文摘Y_(2)O_(3)-doped tungsten(W-Y_(2)O_(3))composite powders prepared by a traditional chemical co-precipitation method possess obvious bimodal distribution in size,which would deteriorate their sintering properties.The bimodal distribution can be effectively eliminated by an improved chemical co-precipitation method,in which the cationic surfactant cetyltrimethyl-ammonium bromide(CTAB)was innovatively employed.The reduced powders with excellent uniformity have an average grain size of only~31.5 nm.It is noteworthy that Y_(2)O_(3)particles would fuse and grow with the growth of W grains during subsequent spark plasma sintering(SPS)process,which was rarely reported in relevant literature before.On top of that,phase interfaces of sintered W-Y_(2)O_(3)alloys were systematically analyzed.Compared to the intracrystalline oxygen content,the oxygen content at W/Y_(2)O_(3)phase boundaries is relatively higher.It can be found that the(110)crystal planes of W form coherent,semi-coherent,and non-coherent interfaces with different crystal planes of Y_(2)O_(3).The weak interfacial bonding strength between W and Y_(2)O_(3)phases results from relatively more oxygen impurities as well as more semi-coherent/non-coherent interfaces at phase boundaries compared with the inner W grains.
基金supported financially by the National Natural Science Foundation of China(Nos.51574178 and 51822404)the Natural Science Foundation of Tianjin(No.18JCYBJC17900)the Seed Foundation of Tianjin University(No.2018XRX-0005)。
文摘As an emerging preparation technology,wet chemical method has been employed widely to produce lots of alloy materials such as W and Mo based alloys,owing to its unique technical advantages.Ascertaining the synthesis mechanism behind wet chemical method is indispensable for controlled synthesis of highquality W-Y2 O3 composite powder precursor.The co-deposition mechanism of yttrium and tungsten component behind the wet chemical method of preparing yttrium-doped tungsten composite nanopowder was investigated systematically in this work.A series of co-deposited composite powders fabricated under different acidity conditions were used as research targets for investigating the effect of surface composition and structure on co-deposition efficiency.It was found that white tungstic acid has more W-OH bonds and much higher co-deposition efficiency with Y^3+ions than yellow tungstic acid.It is illustrated that the coordination reaction between W-OH bonds on tungstic acid particles and Y^3+ions brings the co-deposition of yttrium and tungsten component into being.Through displacing H^+ions in W-OH bonds,Y^3+ions can be adsorbed on the surface of or incorporated into tungstic acid particles in form of ligand.Consequently,to control and regulate Y2 O3 content in powder precursor accurately,H^+ion concentration in wet chemical reaction should be in range of 0.55-2.82 mol L^-1 to obtain white tungstic acid.Besides,H^+ion concentration also has prominent effect on the grain size and morphology of reduced powder precursor.The optimal value should be around 1.58 mol L^-1,which can lead to minimum W grain size(about 17 nm) without bimodal structure.The chemical mechanism proposed in this work could produce great sense to preparation of high-quality precursor for sintering high-performance Y2 O3 dispersion strengthened W based alloys.Our work may also shed light on the approach to exploit analogous synthesis mechanism in other alloy systems.
基金the National Natural Science Foundation of China(Grant Nos.51325401,51474156 and U1660201)the National Magnetic Confinement Fusion Energy Research Project(granted No.2014GB125006)for grant and financial support
文摘The oxide dispersion strengthened(ODS) steel with the nominal composition of Fe–14 Cr–2 W–0.3 Ti–0.2 V–0.07 Ta–0.3 Y2O3(wt%) was fabricated by mechanical alloying and hot isostatic pressing(HIP). In order to optimize the relative volume fraction of secondary phases, the as-HIPed ODS steel was annealed at 800°C, 1000°C, 1200°C for 5 h, respectively. The microstructures and different secondary phases of the as-HIPed and annealed ODS samples were identified by scanning electron microscopy(SEM), transmission electron microscopy(TEM), and X-ray diffraction(XRD). The tensile properties of all the ODS steels at room temperature were also investigated. The results indicate that annealing is an effective way to control the microstructure and the integral secondary phases. The annealing process promotes the dissolution of M23C6 particles, thus promoting the precipitation of TiC.No obvious coarsening of Y2Ti2O7 nanoparticles can be observed during annealing. The tensile results indicate that the annealed ODS sample with the optimized secondary phases and high density possesses the best mechanical properties.
基金supported by the National Natural Science Foundation of China(Nos.51822404 and 51574178)the Science and Technology Program of Tianjin(No.18YFZCGX00070)+1 种基金the Natural Science Foundation of Tianjin(No.18JCYBJC17900)the Seed Foundation of Tianjin University(Nos.2018XRX-0005 and 2019XYF-0066)。
文摘In this work,W-Y2 O3 alloys are prepared by freeze-drying and subsequent low temperature sintering.The average size of reduced W-Y2 O3 composite powders prepared by freeze-drying method is only 18.1 nm.After low temperature sintering of these composite nanopowders,the formed W-Y2 O3 alloys possess a smaller grain size of 510 nm while maintaining a comparatively higher density of 97.8%.Besides a few submicron Y2 O3 particles(about 100-300 nm)with a W-Y-O phase diffusion layer on their surface distribute at W grain boundaries,lots of nano Y2 WO6 particles(<20 nm)exist in W matrix.Moreover,many Y6 WO12(<10 nm)particles exist within submicron Y2 O3 particles.The formation of these ternary phases indicates that some oxygen impurities in the W matrix can be adsorbed by ternary phases,resulting in the purification of W matrix and the strengthening of phase boundaries.The combined action of the above factors makes the hardness of the sintered W-Y2 O3 alloys in our work as high as 656.6±39.0 HV0.2.Our work indicates that freeze-drying and subsequent low temperature sintering is a promising method for preparing high performance W-Y2 O3 alloys.
基金the China National Funds for Distinguished Young Scientists (Grant No. 51325401)the National Natural Science Foundation of China (Granted No. 51474156 and U1660201)the National High Technology Research and Development Program of China (Grant No. 2015AA042504) for grant and financial support
文摘S31042 heat-resistant steel was joined by linear friction welding (LFW) in this study. The microstructure and the mechanical properties of the LFWed joint were investigated by optical microscopy, scanning electronic microscopy, transmission electron microscopy, hardness test and tensile test. A defect-free joint was achieved by using LFW under reasonable welding parameters. The dynamic recrystallization of austenitic grains and the dispersed precipitation of NbCrN particles resulting from the high stress and high temperature in welding, would lead to a improvement of mechanical property of the welded joint. With increasing the distance flom the weld zone to the parent metal, the austenitic grain size gradually increases from -1 μm to - 150 μm, and the microhardness decreases from 301 HV to 225 HV. The tensile strength (about 731 MPa) of the welded joint is comparable to that of the S31042 in the solution-treated state.
基金the National Natural Science Foundation of China(No.51822404)the Natural Science Foundation of Tianjin(No.18JCYBJC17900)+1 种基金supported by the Science and Technology Program of Tianjin(Nos.19YFZCGX00790 and 18YFZCGX00070)Researchers Supporting Project number(No.RSP-2021/6),King Saud University,Riyadh,Saudi Arabia。
文摘The ultrafine Mo-Y_(2)O_(3)composite powders were successfully synthesized by innovative freeze-drying method.Consequently,the freeze-dried Mo-Y_(2)O_(3)composite powders with high sintering activities possess an average grain size of 54 nm.After low temperature sintering at 1600°C,the Mo-Y_(2)O_(3)alloys maintaining a high density(99.6%)have the finest grain size(620 nm)comparing with available literature about oxide dispersion strengthened molybdenum alloy(ODS-Mo).The oxide particles remain their small size(mainly<50 nm)within Mo grains and at Mo grain boundaries.Furthermore,the Y_(5)MO_(2)O_(12)particles were firstly observed within Mo matrix,and its formation can absorb nearby oxygen impurities,which involves the purification of Mo matrix.The mechanical properties show that Mo-Y_(2)O_(3)alloy possess a high hardness of 487±28 HV_(0.2),a high yield strength of 902 MPa,a high compressive strength of1110 MPa,respectively.Our work suggests that freeze-drying and subsequent low temperature sintering can shed light on the preparation of ultrafine ODS-Mo alloys with high performance.
基金financially supported by the National Natural Science Foundation of China(Nos.51822404 and 51574178)the Science and Technology Program of Tianjin(No.18YFZCGX00070)+1 种基金the Natural Science Foundation of Tianjin(No.18JCYBJC17900)the Seed Foundation of Tianjin University(Nos.2018XRX-0005 and 2019XYF-0066).
文摘W-Y2O3 composite nanopowders prepared via wet chemical method exhibit unique morphologies and micro structures.The yttrium addition during chemical reaction process affects not only the composition of tungsten acid hydrate precursors,but also the reduction property of tungsten oxide transformed from precursors.In this study,the morphology evolution of the samples with and without yttrium during reduction process has been studied,and it is found that the addition of yttrium can exert a strong influence on the reduction route of tungsten oxide and the final morphology of tungsten particles.The cause of the difference of reduction route and tungsten particle morphology is also analyzed.It is suggested that the composition of the samples with yttrium at the beginning of reduction is pure cubic system WO3(c-WO3),and the c-WO3 particles have c-WO3 whiskers attached to the surface.This kind of whiskers is essential for c-WO3 to be reduced directly to tungsten and also helpful to obtain W-Y2O3 powders with small size and good uniformity.
基金the National Natural Science Foundation of China(Nos.52034004,51974201 and 52122409)for grant and financial support。
文摘In the precipitation-hardened Ni-based superalloy,typified by ATI 718 Plus,the nano-scaleγandγphase in duplet or triple coprecipitate morphology can provide superior high-temperature strength.Thus,it is of great sense to study the evolution ofγ’/γ’’coprecipitate during long term service at elevated temperature.In this study,the new-typeγ’/γ’’coprecipitates with a sandwich or compact configuration were found firstly in wrought ATI 718 Plus superalloy during long term thermal exposure at 705℃.These co-structure of theγ’/γ’’precipitates evidently inhibit the coarsening ofγ’phase.The increase of thermal exposure time evidently leads to the increase of the volume fraction ofγ’/γ’’coprecipitate and transformation of sandwich-typeγ’/γ’’coprecipitate to compact-typeγ’/γ’’coprecipitate,which is characterized asγphase precipitate at several faces of theγphase.The main evolution mechanism ofγ’/γ’’coprecipitates is element segregation,especially the composition variations of Al+Ti and Nb and their ratio of Al+Ti/Nb.In addition,the interfacial energy betweenγ’’phase andγmatrix also plays a key role on theγ’/γ’’coprecipitates evolution.The calculated results show that the longer thermal exposure time leads to the higher interfacial energy,which is beneficial for nucleation and precipitation ofγ’’phase on the faces ofγ’phase.
基金supported by the National Key Research and Development Program of China(No.2017YFE0302600 and No.2018YFB0703904)。
文摘Oxide-dispersion-strengthened tungsten(ODS-W)and a Cu Cr Zr alloy were bonded by a three-step process:(i)surface nano-activation,(ii)copper plating followed by annealing,and(iii)diffusion bonding.The morphological and structural evolutions of ODS-W and the interface of the ODS-W/CuCrZr joint during these processes have been thoroughly studied by X-ray diffraction,scanning electron microscopy,energy dispersive spectrometry,and high-resolution transmission electron microscopy.After surface nanoactivation,a nanoporous structure of ODS-W with an average pore size of~100 nm was obtained,and the Y_(2)O_(3)particles therein remained unchanged.A Cu coating was tightly bonded with the surface nanoactivated ODS-W after Cu plating and annealing.An interaction layer embedded with nanosized W particles was formed at the interface between ODS-W and plated Cu after the three-step process.Consequently,well-cohesive ODS-W/Cu and ODS-W/Y_(2)O_(3)/Cu interfaces were formed.The ODS-W/Cu Cr Zr joint showed high shear strengths(up to 201 MPa)and effective bonded area ratios(>98%).The developed three-step bonding process between ODS-W and the Cu Cr Zr alloy provides an effective support for future plasma-facing components in nuclear fusion reactor applications.
基金the National Natural Science Foundation of China(51822404)the Science and Technology Program of Tianjin(19YFZCGX00790 and 18YFZCGX00070)+1 种基金the Natural Science Foundation of Tianjin(18JCYBJC17900)the Seed Foundation of Tianjin University(2018XRX-0005)。
文摘With significantly enhanced irradiation resistance,high-temperature strength,and creep resistance,oxide-dispersion-strengthened tungsten(ODS-W)alloys present tremendous potential for high-temperature applications.However,the oxide particles tend to segregate at W grain boundary and grow up(even to micron),greatly suppressing their strengthening effect.It is always a great challenge to effectively refine and disperse the oxide particles at W grain boundary.Here,we successfully developed a new type of cation-doped W-Y2O3 alloy via a wet chemical method and subsequent low-temperature sintering.It was found that proper cation doping could not only significantly refine the intergranular Y2O3 second phase particles but also dramatically improve the sinterability of W matrix.These doping effects,as a result,simultaneously enhance the strength and ductility of the W-Y2O3 alloy.It was confirmed that the segregation of cation dopants at the W/Y2O3 interface is the origin of these doping effects.Furthermore,X-ray photoemission spectra(XPS)analyses confirmed that cation dopant segregation also obviously affects the chemical bonding(i.e.,W–O bond)along the W/Y2O3 interface.As a result,the ratelimiting mechanism for W grain growth is influenced remarkably,explaining well the difference of W grain size in various cation-doped W-Y2O3 alloys.For the refinement of intergranular Y2O3 particles,it can be understood well from both thermodynamic and kinetic views.Detailedly,W/Y2O3 interfacial energy and atom mobility for Y2O3 coarsening are all limited by cation dopant segregation.More importantly,this cation-doping approach can also be applicable to other ODS alloys for enhancing their comprehensive mechanical properties.