Estuarine and intertidal wetlands are important sites for nitrogen transformation and elimination.However,the factors controlling nitrogen removal processes remain largely uncertain in the highly dynamic environments....Estuarine and intertidal wetlands are important sites for nitrogen transformation and elimination.However,the factors controlling nitrogen removal processes remain largely uncertain in the highly dynamic environments.In this study,continuous-flow experiment combined with 15 N isotope pairing technique was used to investigate in situ rates of denitrification and anaerobic ammonium oxidation(anammox)and their coupling with nitrification in intertidal wetlands of the Yangtze Estuary.The measured rates varied from below the detection limit to 152.39μmol N/(m^2·hr)for denitrification and from below the detection limit to 43.06μmol N/(m^2·hr)for anammox.The coupling links of nitrogen removal processes with nitrification were mainly dependent on nitrate,organic carbon,sulfide,dissolved oxygen and ferric iron in the estuarine and intertidal wetlands.Additionally,it was estimated that the actual nitrogen removal processes annually removed approximately 5%of the terrigenous inorganic nitrogen discharged into the Yangtze Estuary.This study gives new insights into nitrogen transformation and fate in the estuarine and intertidal wetlands.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41725002,41671463,41601530,41761144062,and41730646)the Fundamental Research Funds for the Central UniversitiesChinese National Key Programs for Fundamental Research and Development(Nos.2016YFA0600904,2016YFE0133700)。
文摘Estuarine and intertidal wetlands are important sites for nitrogen transformation and elimination.However,the factors controlling nitrogen removal processes remain largely uncertain in the highly dynamic environments.In this study,continuous-flow experiment combined with 15 N isotope pairing technique was used to investigate in situ rates of denitrification and anaerobic ammonium oxidation(anammox)and their coupling with nitrification in intertidal wetlands of the Yangtze Estuary.The measured rates varied from below the detection limit to 152.39μmol N/(m^2·hr)for denitrification and from below the detection limit to 43.06μmol N/(m^2·hr)for anammox.The coupling links of nitrogen removal processes with nitrification were mainly dependent on nitrate,organic carbon,sulfide,dissolved oxygen and ferric iron in the estuarine and intertidal wetlands.Additionally,it was estimated that the actual nitrogen removal processes annually removed approximately 5%of the terrigenous inorganic nitrogen discharged into the Yangtze Estuary.This study gives new insights into nitrogen transformation and fate in the estuarine and intertidal wetlands.