Tea,a globally cultivated crop renowned for its uniqueflavor profile and health-promoting properties,ranks among the most favored functional beverages worldwide.However,diseases severely jeopardize the production and qu...Tea,a globally cultivated crop renowned for its uniqueflavor profile and health-promoting properties,ranks among the most favored functional beverages worldwide.However,diseases severely jeopardize the production and quality of tea leaves,leading to significant economic losses.While early and accurate identification coupled with the removal of infected leaves can mitigate widespread infection,manual leaves removal remains time-con-suming and expensive.Utilizing robots for pruning can significantly enhance efficiency and reduce costs.How-ever,the accuracy of object detection directly impacts the overall efficiency of pruning robots.In complex tea plantation environments,complex image backgrounds,the overlapping and occlusion of leaves,as well as small and densely harmful leaves can all introduce interference factors.Existing algorithms perform poorly in detecting small and densely packed targets.To address these challenges,this paper collected a dataset of 1108 images of harmful tea leaves and proposed the YOLO-DBD model.The model excels in efficiently identifying harmful tea leaves with various poses in complex backgrounds,providing crucial guidance for the posture and obstacle avoidance of a robotic arm during the pruning process.The improvements proposed in this study encompass the Cross Stage Partial with Deformable Convolutional Networks v2(C2f-DCN)module,Bi-Level Routing Atten-tion(BRA),Dynamic Head(DyHead),and Focal Complete Intersection over Union(Focal-CIoU)Loss function,enhancing the model’s feature extraction,computation allocation,and perception capabilities.Compared to the baseline model YOLOv8s,mean Average Precision at IoU 0.5(mAP0.5)increased by 6%,and Floating Point Operations Per second(FLOPs)decreased by 3.3 G.展开更多
When a satellite is in orbit, its flywheel will generate micro vibration and affect the imaging quality of the camera. In order to reduce this effect, a rubber shock absorber is used, and a numerical model and an expe...When a satellite is in orbit, its flywheel will generate micro vibration and affect the imaging quality of the camera. In order to reduce this effect, a rubber shock absorber is used, and a numerical model and an experimental setup are developed to investigate its effect on the micro vibration in the study. An integrated model is developed for the system, and a ray tracing method is used in the modeling. The spot coordinates and displacements of the image plane are obtained, and the modulate transfer function (MTF) of the system is calculated. A satellite including a rubber shock absorber is designed, and the experiments are carried out. Both simulation and experiments results show that the MTF increases almost 10 %, suggesting the rubber shock absorber is useful to decrease the flywheel vibration.展开更多
文摘Tea,a globally cultivated crop renowned for its uniqueflavor profile and health-promoting properties,ranks among the most favored functional beverages worldwide.However,diseases severely jeopardize the production and quality of tea leaves,leading to significant economic losses.While early and accurate identification coupled with the removal of infected leaves can mitigate widespread infection,manual leaves removal remains time-con-suming and expensive.Utilizing robots for pruning can significantly enhance efficiency and reduce costs.How-ever,the accuracy of object detection directly impacts the overall efficiency of pruning robots.In complex tea plantation environments,complex image backgrounds,the overlapping and occlusion of leaves,as well as small and densely harmful leaves can all introduce interference factors.Existing algorithms perform poorly in detecting small and densely packed targets.To address these challenges,this paper collected a dataset of 1108 images of harmful tea leaves and proposed the YOLO-DBD model.The model excels in efficiently identifying harmful tea leaves with various poses in complex backgrounds,providing crucial guidance for the posture and obstacle avoidance of a robotic arm during the pruning process.The improvements proposed in this study encompass the Cross Stage Partial with Deformable Convolutional Networks v2(C2f-DCN)module,Bi-Level Routing Atten-tion(BRA),Dynamic Head(DyHead),and Focal Complete Intersection over Union(Focal-CIoU)Loss function,enhancing the model’s feature extraction,computation allocation,and perception capabilities.Compared to the baseline model YOLOv8s,mean Average Precision at IoU 0.5(mAP0.5)increased by 6%,and Floating Point Operations Per second(FLOPs)decreased by 3.3 G.
文摘When a satellite is in orbit, its flywheel will generate micro vibration and affect the imaging quality of the camera. In order to reduce this effect, a rubber shock absorber is used, and a numerical model and an experimental setup are developed to investigate its effect on the micro vibration in the study. An integrated model is developed for the system, and a ray tracing method is used in the modeling. The spot coordinates and displacements of the image plane are obtained, and the modulate transfer function (MTF) of the system is calculated. A satellite including a rubber shock absorber is designed, and the experiments are carried out. Both simulation and experiments results show that the MTF increases almost 10 %, suggesting the rubber shock absorber is useful to decrease the flywheel vibration.