The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compa...The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compatibility against both Li-metal anode and high-voltage cathode.There is no composite electrolyte to synchronously meet all these requirements yet,and the battery performance is inhibited by the absence of effective electrolyte design.Here we report a unique"concentrated ionogel-in-ceramic"silanization composite electrolyte(SCE)and validate an electrolyte design strategy based on the coupling of high-content silane-conditioning garnet and concentrated ionogel that builds well-percolated Li+transport pathways and tackles the interface issues to respond all the aforementioned requirements.It is revealed that the silane conditioning enables the uniform dispersion of garnet nanoparticles at high content(70 wt%)and forms mixed-lithiophobic-conductive LiF-Li3N solid electrolyte interphase.Notably,the yielding SCE delivers an ultrahigh ionic conductivity of 1.76 X 10^(-3)S cm^(-1)at 25℃,an extremely low Li-metal/electrolyte interfacial area-specific resistance of 13Ωcm^(2),and a distinctly excellent long-term 1200 cycling without any capacity decay in 4.3 V Li‖LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)quasi-solid-state LMB.This composite electrolyte design strategy can be extended to other quasi-/solid-state LMBs.展开更多
[Objectives]To explore the effects of Polygona fallax Hemsl water extract on gastrointestinal motility in normal mice and gastric motility disorder model mice and approximate mechanism.[Methods]Using normal mice and m...[Objectives]To explore the effects of Polygona fallax Hemsl water extract on gastrointestinal motility in normal mice and gastric motility disorder model mice and approximate mechanism.[Methods]Using normal mice and mice with gastric motility disorders(modeled with atropine),the effects of different mass concentration groups of P.fallax Hemsl water extract(0.125,0.250,0.500 g/mL)and domperidone groups on gastric residual rate,small intestine propulsion rate,serum motilin(MLT),vasoactive intestinal peptide(VIP),and tissue morphology were studied.[Results]There was a highly significant difference(P<0.01)in the small intestine propulsion rate of liquid in normal mice among the different concentration groups of P.fallax Hemsl water extract compared to the blank group.The small intestine propulsion rate and gastric residue rate of semi-solid paste were statistically significant compared to the blank group(P<0.05).Among them,there was a highly significant difference between the high concentration group(67.75%±7.65%,46.5%±10.62%)and the medium concentration group(60.90%±5.87%,59.27%±7.82%)(P<0.01).There was statistical significance in normal mouse serum MLT content in the high concentration group(P<0.05).There was no effect on serum VIP levels in normal mice;no effect on the morphology of stomach and intestinal tissues of normal mice.The small intestine propulsion rate and gastric residue rate of liquid and semi-solid paste in mice with gastric motility disorders were statistically significant compared to the atropine group,with extremely significant differences(P<0.01).[Conclusions]P.fallax Hemsl water extract has a promoting effect on gastrointestinal motility.One of the specific mechanisms by which P.fallax Hemsl promotes gastrointestinal motility in normal mice may be related to the content of MLT in mouse serum.The mechanism of action in atropine induced gastric paresis mice may be related to the reactivation of M receptors,and the action mechanism of P.fallax Hemsl does not change the original histological basis.It can be inferred that P.fallax Hemsl water extract has a synergistic effect on promoting gastrointestinal motility through other mechanisms,but it is not fully understood and further in-depth research is needed.展开更多
The radionuclide(RN)migration study is not only helpful to understand environmental behavior of RNs,but also can establish the basis for the safety assessment of geological disposal of high-level radioactive waste(HLW...The radionuclide(RN)migration study is not only helpful to understand environmental behavior of RNs,but also can establish the basis for the safety assessment of geological disposal of high-level radioactive waste(HLW).In the context of China’s HLW disposal,this review briefly summaries the progress of China’s RN migration studies over the past decade regarding three aspects,RN sorption,RN transport and radioactive colloid.Domestic studies from other disciplines(such as geology and environmental science)are also included in this review because they can provide references for the RN migration study.Overall,China has achieved clear progress in RN migration study over the past decade,although large-scaled field experiments are lacked and a gap still exists comparing with the international advanced level.Finally,several suggestions are proposed for future RN migration research in China.展开更多
基金supported by the Key Program for International Science and Technology Cooperation Projects of the Ministry of Science and Technology of China(2021YFE0109700)Technical Innovation and Application Development Project of Chongqing(Z20230084)+7 种基金Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure(SKL202106SIC)Chinese National Natural Science Fund(11632004,U1864208)National Science and Technology Major Project(2017-VII-0011-0106)Science and Technology Planning Project of Tianjin(20ZYJDJC00030)Key Program of Research and Development of Hebei Province(202030507040009)Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province(A2020202002)Natural Science Foundation of Chongqing(cstc2021jcyjmsxm X0241)Key Project of Natural Science Foundation of Tianjin(S20ZDF077)
文摘The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compatibility against both Li-metal anode and high-voltage cathode.There is no composite electrolyte to synchronously meet all these requirements yet,and the battery performance is inhibited by the absence of effective electrolyte design.Here we report a unique"concentrated ionogel-in-ceramic"silanization composite electrolyte(SCE)and validate an electrolyte design strategy based on the coupling of high-content silane-conditioning garnet and concentrated ionogel that builds well-percolated Li+transport pathways and tackles the interface issues to respond all the aforementioned requirements.It is revealed that the silane conditioning enables the uniform dispersion of garnet nanoparticles at high content(70 wt%)and forms mixed-lithiophobic-conductive LiF-Li3N solid electrolyte interphase.Notably,the yielding SCE delivers an ultrahigh ionic conductivity of 1.76 X 10^(-3)S cm^(-1)at 25℃,an extremely low Li-metal/electrolyte interfacial area-specific resistance of 13Ωcm^(2),and a distinctly excellent long-term 1200 cycling without any capacity decay in 4.3 V Li‖LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)quasi-solid-state LMB.This composite electrolyte design strategy can be extended to other quasi-/solid-state LMBs.
基金2022 National College Student Innovation and Entrepreneurship Training Program(202210599004).
文摘[Objectives]To explore the effects of Polygona fallax Hemsl water extract on gastrointestinal motility in normal mice and gastric motility disorder model mice and approximate mechanism.[Methods]Using normal mice and mice with gastric motility disorders(modeled with atropine),the effects of different mass concentration groups of P.fallax Hemsl water extract(0.125,0.250,0.500 g/mL)and domperidone groups on gastric residual rate,small intestine propulsion rate,serum motilin(MLT),vasoactive intestinal peptide(VIP),and tissue morphology were studied.[Results]There was a highly significant difference(P<0.01)in the small intestine propulsion rate of liquid in normal mice among the different concentration groups of P.fallax Hemsl water extract compared to the blank group.The small intestine propulsion rate and gastric residue rate of semi-solid paste were statistically significant compared to the blank group(P<0.05).Among them,there was a highly significant difference between the high concentration group(67.75%±7.65%,46.5%±10.62%)and the medium concentration group(60.90%±5.87%,59.27%±7.82%)(P<0.01).There was statistical significance in normal mouse serum MLT content in the high concentration group(P<0.05).There was no effect on serum VIP levels in normal mice;no effect on the morphology of stomach and intestinal tissues of normal mice.The small intestine propulsion rate and gastric residue rate of liquid and semi-solid paste in mice with gastric motility disorders were statistically significant compared to the atropine group,with extremely significant differences(P<0.01).[Conclusions]P.fallax Hemsl water extract has a promoting effect on gastrointestinal motility.One of the specific mechanisms by which P.fallax Hemsl promotes gastrointestinal motility in normal mice may be related to the content of MLT in mouse serum.The mechanism of action in atropine induced gastric paresis mice may be related to the reactivation of M receptors,and the action mechanism of P.fallax Hemsl does not change the original histological basis.It can be inferred that P.fallax Hemsl water extract has a synergistic effect on promoting gastrointestinal motility through other mechanisms,but it is not fully understood and further in-depth research is needed.
基金supported by the National Natural Science Foundation of China(Nos.21806064,U1730245,21906074,22176079)Fundamental Research Funds for the Central Universities(No.lzujbky-2021-sp27)。
文摘The radionuclide(RN)migration study is not only helpful to understand environmental behavior of RNs,but also can establish the basis for the safety assessment of geological disposal of high-level radioactive waste(HLW).In the context of China’s HLW disposal,this review briefly summaries the progress of China’s RN migration studies over the past decade regarding three aspects,RN sorption,RN transport and radioactive colloid.Domestic studies from other disciplines(such as geology and environmental science)are also included in this review because they can provide references for the RN migration study.Overall,China has achieved clear progress in RN migration study over the past decade,although large-scaled field experiments are lacked and a gap still exists comparing with the international advanced level.Finally,several suggestions are proposed for future RN migration research in China.