Polarimetric radar and 2D video disdrometer observations provide new insights into the precipitation microphysical processes and characteristics in the inner rainband of tropical cyclone(TC)Kajiki(2019)in the South Ch...Polarimetric radar and 2D video disdrometer observations provide new insights into the precipitation microphysical processes and characteristics in the inner rainband of tropical cyclone(TC)Kajiki(2019)in the South China Sea for the first time.The precipitation of Kajiki is dominated by high concentrations and small(<3 mm)raindrops,which contribute more than 98%to the total precipitation.The average mass-weighted mean diameter and logarithmic normalized intercept are 1.49 mm and 4.47,respectively,indicating a larger mean diameter and a lower concentration compared to the TCs making landfall in eastern China.The ice processes of the inner rainband are dramatically different among different stages.The riming process is dominant during the mature stage,while during the decay stage the aggregation process is dominant.The vertical profiles of the polarimetric radar variables together with ice and liquid water contents in the convective region indicate that the formation of precipitation is dominated by warm-rain processes.Large raindrops collect cloud droplets and other raindrops,causing reflectivity,differential reflectivity,and specific differential phase to increase with decreasing height.That is,accretion and coalescence play a critical role in the formation of heavy rainfall.The melting of different particles generated by the ice process has a great influence on the initial raindrop size distribution(DSD)to further affect the warm-rain processes.The DSD above heavy rain with the effect of graupel has a wider spectral width than the region without the effect of graupel.展开更多
基金This work was primarily supported by the National Key Research and Development Program of China(Grant No.2018YFC1507304)the National Natural Science Foundation of China(Grant Nos.42075080,41975066 and 41865009).
文摘Polarimetric radar and 2D video disdrometer observations provide new insights into the precipitation microphysical processes and characteristics in the inner rainband of tropical cyclone(TC)Kajiki(2019)in the South China Sea for the first time.The precipitation of Kajiki is dominated by high concentrations and small(<3 mm)raindrops,which contribute more than 98%to the total precipitation.The average mass-weighted mean diameter and logarithmic normalized intercept are 1.49 mm and 4.47,respectively,indicating a larger mean diameter and a lower concentration compared to the TCs making landfall in eastern China.The ice processes of the inner rainband are dramatically different among different stages.The riming process is dominant during the mature stage,while during the decay stage the aggregation process is dominant.The vertical profiles of the polarimetric radar variables together with ice and liquid water contents in the convective region indicate that the formation of precipitation is dominated by warm-rain processes.Large raindrops collect cloud droplets and other raindrops,causing reflectivity,differential reflectivity,and specific differential phase to increase with decreasing height.That is,accretion and coalescence play a critical role in the formation of heavy rainfall.The melting of different particles generated by the ice process has a great influence on the initial raindrop size distribution(DSD)to further affect the warm-rain processes.The DSD above heavy rain with the effect of graupel has a wider spectral width than the region without the effect of graupel.