Due to the loss of organic amine cations and lead ions in the structure of the iodine-lead methylamine perovskite solar cell,there are a large number of defects within the film and the recombination loss caused by gra...Due to the loss of organic amine cations and lead ions in the structure of the iodine-lead methylamine perovskite solar cell,there are a large number of defects within the film and the recombination loss caused by grain boundaries,which seriously hinder the further improvement of power conversion efficiency and stability.Herein,a novel carbon nitride C_(3)N_(3) incorporated into the perovskite precursor solution is a multifunctional strategy,which not only increases the light absorption strength,grain size,and hydrophobicity of the perovskite film,but also effectively passivates the bulk and interfacial defects of perovskite and verified by the first-principles density functional theory calculations.As a result,the efficiency and stability of perovskite solar cells are improved.The device with 0.075 mg mL^(-1) C_(3)N_(3) additive delivers a champion power conversion efficiency of 19.91%with suppressed hysteresis,which is significantly higher than the 18.16% of the control device.In addition,the open-circuit voltage of the modified device with the maximum addition as high as 1.137 V is 90.96% of the Shockley–Queisser limit(1.25 V).Moreover,the power conversion efficiency of the modified device without encapsulation can maintain nearly 90% of its initial value after being stored at 25℃ and 60% relative humidity for 500 h.This work provides a new idea for developing additives to improve the power conversion efficiency and stability of perovskite solar cells.展开更多
Partial liver resection is an established treatment for hepatic disorders.However,surgical bleeding,intra-abdominal adhesion and rapid liver regeneration are still major challenges after partial liver resection,associ...Partial liver resection is an established treatment for hepatic disorders.However,surgical bleeding,intra-abdominal adhesion and rapid liver regeneration are still major challenges after partial liver resection,associated with morbidity and mortality.Herein,a biomimetic hybrid hydrogel,composed of oxidized hyaluronic acid,glycol chitosan and MenSCs-derived conditioned medium(CM),is presented to address these issues.The hybrid hydrogel is formed through reversible Schiff base,and possesses injectability and self-healing capability.Moreover,hybrid hydrogel exhibits the capabilities of hemostasis,anti-infection,tissue adhesion and controllable release of cargoes.Based on in vivo studies of the multifunctional hybrid hydrogel,it is demonstrated that acute bleeding in partial liver resection can be ceased immediately by virtue of the hemostasis features of hybrid hydrogel.Also,a significant reduction of intra-abdominal adhesion is confirmed in hybrid hydrogel-treated resection surface.Furthermore,upon the treatment of hybrid hydrogel,hepatic cell proliferation and tissue regeneration can be significantly improved due to the controllably released cytokines from MenSCs-derived CM,exerting the effects of mitogenesis and anti-inflammation in vivo.Thus,the biomimetic hybrid hydrogel can be a promising candidate with great potential for application in partial liver resection.展开更多
基金This work was financially supported by National Natural Science Foundation of China(52002121,62004064,21873027,and 21905219)the Key Program for Inter-governmental S&T Innovation Cooperation Projects of National Key R&D Pro-gram of China(2019YFE0107100)+1 种基金Natural Science Foundation of Hubei Province(2020CFA091)Overseas Expertise Introduction Center for Discipline Innova-tion(D18025).
文摘Due to the loss of organic amine cations and lead ions in the structure of the iodine-lead methylamine perovskite solar cell,there are a large number of defects within the film and the recombination loss caused by grain boundaries,which seriously hinder the further improvement of power conversion efficiency and stability.Herein,a novel carbon nitride C_(3)N_(3) incorporated into the perovskite precursor solution is a multifunctional strategy,which not only increases the light absorption strength,grain size,and hydrophobicity of the perovskite film,but also effectively passivates the bulk and interfacial defects of perovskite and verified by the first-principles density functional theory calculations.As a result,the efficiency and stability of perovskite solar cells are improved.The device with 0.075 mg mL^(-1) C_(3)N_(3) additive delivers a champion power conversion efficiency of 19.91%with suppressed hysteresis,which is significantly higher than the 18.16% of the control device.In addition,the open-circuit voltage of the modified device with the maximum addition as high as 1.137 V is 90.96% of the Shockley–Queisser limit(1.25 V).Moreover,the power conversion efficiency of the modified device without encapsulation can maintain nearly 90% of its initial value after being stored at 25℃ and 60% relative humidity for 500 h.This work provides a new idea for developing additives to improve the power conversion efficiency and stability of perovskite solar cells.
基金supported by the Independent Project Fund of the State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseZhejiang Provincial Natural Science Foundation of China(LQ19C120001)+1 种基金Zhejiang Provincial Natural Science Foundation of China(LY17H030005)National Key Research and Development Program of China(2019YFC0840600&2019YFC0840609).
文摘Partial liver resection is an established treatment for hepatic disorders.However,surgical bleeding,intra-abdominal adhesion and rapid liver regeneration are still major challenges after partial liver resection,associated with morbidity and mortality.Herein,a biomimetic hybrid hydrogel,composed of oxidized hyaluronic acid,glycol chitosan and MenSCs-derived conditioned medium(CM),is presented to address these issues.The hybrid hydrogel is formed through reversible Schiff base,and possesses injectability and self-healing capability.Moreover,hybrid hydrogel exhibits the capabilities of hemostasis,anti-infection,tissue adhesion and controllable release of cargoes.Based on in vivo studies of the multifunctional hybrid hydrogel,it is demonstrated that acute bleeding in partial liver resection can be ceased immediately by virtue of the hemostasis features of hybrid hydrogel.Also,a significant reduction of intra-abdominal adhesion is confirmed in hybrid hydrogel-treated resection surface.Furthermore,upon the treatment of hybrid hydrogel,hepatic cell proliferation and tissue regeneration can be significantly improved due to the controllably released cytokines from MenSCs-derived CM,exerting the effects of mitogenesis and anti-inflammation in vivo.Thus,the biomimetic hybrid hydrogel can be a promising candidate with great potential for application in partial liver resection.