High-throughput calculations/simulations are the prerequisite for the efficient design of high-performance materials.In this paper,a machine learning accelerated distributed task management system(Malac-Distmas)was de...High-throughput calculations/simulations are the prerequisite for the efficient design of high-performance materials.In this paper,a machine learning accelerated distributed task management system(Malac-Distmas)was developed to realize the high-throughput calculations(HTCs)and storage of various data.The machine learning was embedded in Malac-Distmas to densify the output data,reduce the amount of calculation and achieve the acceleration of high-throughput calculations.Based on the Malac-Distmas coupling with CALPHAD software,HTCs of thermodynamics,kinetics,and thermophysical properties,including Gibbs free energy,phase diagram,Scheil-Gulliver solidification simulation,thermodynamic properties,thermophysical properties,diffusion simulation,and precipitation simulation,have been performed for demonstration.Furthermore,it is highly anticipated that the Malac-Distmas can also be coupled with any calculation/simulation software/code,which provides a console model to achieve different types of HTCs for efficient alloy design.展开更多
基金support from the Youth Talent Project of Innovation-driven Plan at Central South University(Grant No.2282019SYLB026)is greatly acknowledgedsupport from the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2019zzts854).
文摘High-throughput calculations/simulations are the prerequisite for the efficient design of high-performance materials.In this paper,a machine learning accelerated distributed task management system(Malac-Distmas)was developed to realize the high-throughput calculations(HTCs)and storage of various data.The machine learning was embedded in Malac-Distmas to densify the output data,reduce the amount of calculation and achieve the acceleration of high-throughput calculations.Based on the Malac-Distmas coupling with CALPHAD software,HTCs of thermodynamics,kinetics,and thermophysical properties,including Gibbs free energy,phase diagram,Scheil-Gulliver solidification simulation,thermodynamic properties,thermophysical properties,diffusion simulation,and precipitation simulation,have been performed for demonstration.Furthermore,it is highly anticipated that the Malac-Distmas can also be coupled with any calculation/simulation software/code,which provides a console model to achieve different types of HTCs for efficient alloy design.