The organic–inorganic hybrid(C2H5NH3)2 CuCl4(EA2CuCl4) single crystals are prepared by the solvothermal condition method. The x-ray diffraction, scanning electron microscopy, dielectric permittivity, pyroelectric cur...The organic–inorganic hybrid(C2H5NH3)2 CuCl4(EA2CuCl4) single crystals are prepared by the solvothermal condition method. The x-ray diffraction, scanning electron microscopy, dielectric permittivity, pyroelectric current, and heat capacity are used to systematically investigate the electrocaloric performances of EA2CuCl4. The pyroelectric currents are measured under various voltages, and the electrocaloric effect(ECE) is calculated. Its ECE exhibits an isothermal entropy change of 0.0028 J/kg·K under an electric field of 30 kV/cm associated with a relatively broad temperature span. Further, the maximum pyroelectric coefficient(p) is 4× 10^-3 C/m^2·K and the coefficient β for generating ECE from electric displacement D is 1.068× 10^8 J·cm·K^-1·C^-2 at 240 K. Our results indicate that the ECE behavior of organic–inorganic hybrid EA2CuCl4 is in accordance with Jona and Shirane’s opinion in which the ECE should occur both below and above the Curie temperature Tc.展开更多
基金Project supported by the Fujian Institute of Innovation,Chinese Academy of Sciences(Grant No.FJCXY18040303)the Youth Innovation Promotion of the Chinese Academy of Sciences(Grant No.2013004)the National Natural Science Foundation of China(Grant Nos.51676198 and 51771067)
文摘The organic–inorganic hybrid(C2H5NH3)2 CuCl4(EA2CuCl4) single crystals are prepared by the solvothermal condition method. The x-ray diffraction, scanning electron microscopy, dielectric permittivity, pyroelectric current, and heat capacity are used to systematically investigate the electrocaloric performances of EA2CuCl4. The pyroelectric currents are measured under various voltages, and the electrocaloric effect(ECE) is calculated. Its ECE exhibits an isothermal entropy change of 0.0028 J/kg·K under an electric field of 30 kV/cm associated with a relatively broad temperature span. Further, the maximum pyroelectric coefficient(p) is 4× 10^-3 C/m^2·K and the coefficient β for generating ECE from electric displacement D is 1.068× 10^8 J·cm·K^-1·C^-2 at 240 K. Our results indicate that the ECE behavior of organic–inorganic hybrid EA2CuCl4 is in accordance with Jona and Shirane’s opinion in which the ECE should occur both below and above the Curie temperature Tc.