期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of effluent organic matters on endocrine disrupting chemical removal by ultrafiltration and ozonation in synthetic secondary effluent 被引量:4
1
作者 Xiurong Si zunfang hu +1 位作者 Ding Ding Xu Fu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第2期57-64,共8页
Endocrine disrupting chemicals(EDCs) in the secondary effluent discharged from wastewater treatment plants are of great concern when water reuse is intended. Ozonation and ultrafiltration(UF) are powerful technologies... Endocrine disrupting chemicals(EDCs) in the secondary effluent discharged from wastewater treatment plants are of great concern when water reuse is intended. Ozonation and ultrafiltration(UF) are powerful technologies reported to eliminate EDCs. Due to the importance of effluent organic matters(EfOMs) in secondary effluent, the effects of three kinds of EfOM on the treatment of five EDCs using ozonation and UF were investigated. The three kinds of EfOM studied were humic acid sodium salt(NaAH), bovine serum albumin(BSA)and sodium alginate(NaAg); and the five EDCs were estrone, 17β-estradiol, estriol, 17α-ethynyl estradiol and bisphenol A. The results showed that EfOM accelerated the decay rate of ozone and inhibited the degradation efficiency of EDCs by ozonation in the order NaAH > BSA > NaAg.The ultraviolet absorbance at 280 nm(UVA_(280)) has potential for use as a surrogate indicator to assess EDC removal via ozonation without conducting difficult EDC analyses. When the decline in UVA_(280) exceeded 18%, the five EDCs had been completely removed. The UF behavior of NaAH,BSA and NaAg was found to follow the cake filtration law. The fouling potential of EfOM followed the order NaAg > NaAH > BSA; while EfOM on the membrane surface enhanced EDC removal in the order NaAH > BSA > NaAg. The mean retention rate of the membrane was increased by 24%, 10% and 8%, respectively. The properties of EDCs and EfOM cakes both influenced the EDC removal rates due to adsorption, size exclusion and charge attraction. 展开更多
关键词 ENDOCRINE disrupting CHEMICALS ULTRAFILTRATION OZONATION EFFLUENT organic MATTERS Secondary EFFLUENT
原文传递
Mesoporous silicas synthesis and application for lignin peroxidase immobilization by covalent binding method
2
作者 zunfang hu Longqian Xu Xianghua Wen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第1期181-187,共7页
Immobilization of enzymes on mesoporous silicas (MS) allows for good reusability. MS with two-dimensional hexagonal pores in diameter up to 14.13 nm were synthesized using Pluronic P123 as template and 1,3,5-triisop... Immobilization of enzymes on mesoporous silicas (MS) allows for good reusability. MS with two-dimensional hexagonal pores in diameter up to 14.13 nm were synthesized using Pluronic P123 as template and 1,3,5-triisopropylbenzene as a swelling agent in acetate buffer. The surface of MS was modified by the silanization reagents 3-aminopropyltriethoxysilane. Lignin peroxidase (LIP) was successfully immobilized on the modified MS through covalent binding method by four agents: glutaraldehyde, 1,4- phenylene diisothiocyanate, cyanotic chloride and water-soluble carbodiimide. Results showed that cyanotic chloride provided the best performance for LiP immobilization. The loaded protein concentration was 12.15 mg/g and the immobilized LiP activity was 812.9 U/L. Immobilized LiP had better pH stability. Acid Orange II was used to examine the reusability of immobilized LiP, showing more than 50% of the dye was decolorized at the fifth cycle. 展开更多
关键词 mesoporous silica lignin peroxidase covalent binding STABILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部