期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Simultaneous improvement of strength and ductility by Mn addition in extruded Mg−Gd−Zn alloy 被引量:3
1
作者 Jun ZHAO Bin JIANG +6 位作者 Yan SONG zuo-cai dai Li-wei LU Chao HE Guang-sheng HUANG Ding-fei ZHANG Fu-sheng PAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第5期1460-1471,共12页
The influence of Mn content on the microstructure,tensile properties and strain-hardening behaviors of extruded Mg−1Gd−0.5Zn−xMn(x=0,0.3 and 1,wt.%)alloy sheets was investigated by X-ray diffraction(XRD),scanning elec... The influence of Mn content on the microstructure,tensile properties and strain-hardening behaviors of extruded Mg−1Gd−0.5Zn−xMn(x=0,0.3 and 1,wt.%)alloy sheets was investigated by X-ray diffraction(XRD),scanning electron microscope(SEM),and electron backscatter diffraction(EBSD).The results show that the completely recrystallized grain structure and the extrusion direction(ED)-titling texture are observed in all the extruded sheets.The mean grain size and weakened ED-titling texture of the extruded sheets are gradually reduced with increasing Mn content.This is primarily associated with the formation of new fineα-Mn particles by Mn addition.Tensile properties show that the addition of Mn also leads to the improvement of yield strengths,ultimate tensile strengths and elongations of the extruded Mg−1Gd−0.5Zn−xMn sheets,which is mainly due to the fine grains andα-Mn particles.In addition,the Mg−1Gd−0.5Zn−1Mn sheet has the lowest strain-hardening exponent and the best hardening capacity among all prepared Mg−1Gd−0.5Zn−xMn sheets. 展开更多
关键词 Mg−Gd−Zn alloy Mn addition microstructure mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部