期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Formic acid dehydrogenation reaction on high-performance Pd_(x)Au_(1−x) alloy nanoparticles prepared by the eco-friendly slow synthesis methodology
1
作者 Yibo GAO Erjiang HU +1 位作者 Bo huang zuohua huang 《Frontiers in Energy》 SCIE EI CSCD 2023年第6期751-762,共12页
Dehydrogenation of formic acid (FA) is considered to be an effective solution for efficient storage and transport of hydrogen. For decades, highly effective catalysts for this purpose have been widely investigated, bu... Dehydrogenation of formic acid (FA) is considered to be an effective solution for efficient storage and transport of hydrogen. For decades, highly effective catalysts for this purpose have been widely investigated, but numerous challenges remain. Herein, the Pd_(x)Au_(1−x) (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) alloys over the whole composition range were successfully prepared and used to catalyze FA hydrogen production efficiently near room temperature. Small PdAu nanoparticles (5–10 nm) were well-dispersed and supported on the activated carbon to form PdAu solid solution alloys via the eco-friendly slow synthesis methodology. The physicochemical properties of the PdAu alloys were comprehensively studied by utilizing various measurement methods, such as X-ray diffraction (XRD), N2 adsorption–desorption, high angle annular dark field-scanning transmission electron microscope (HAADF-STEM), X-ray photoelectrons spectroscopy (XPS). Notably, owing to the strong metal-support interaction (SMSI) and electron transfer between active metal Au and Pd, the Pd0.5Au0.5 obtained exhibits a turnover frequency (TOF) value of up to 1648 h−1 (313 K, nPd+Au/nFA = 0.01, nHCOOH/nHCOONa = 1:3) with a high activity, selectivity, and reusability in the FA dehydrogenation. 展开更多
关键词 FA dehydrogenation face-centred cubic structures PdAu solid solution alloy nanoparticles slow synthesis methodology SMSI effect
原文传递
Effect of 2,5-dimethylfuran addition on ignition delay times of n-heptane at high temperatures 被引量:4
2
作者 Zhenhua GAO Erjiang HU +2 位作者 Zhaohua XU Geyuan YIN zuohua huang 《Frontiers in Energy》 SCIE CSCD 2019年第3期464-473,共10页
The shock tube autoignition of 2,5-dimethylfuran (DMF)/n-heptane blends (DMF)/n-100%, by mole fraction) with equivalence ratios of 0.5, 1.0, and 2.0 over the temperature range of 1200-1800 K and pressures of 2.0 atm a... The shock tube autoignition of 2,5-dimethylfuran (DMF)/n-heptane blends (DMF)/n-100%, by mole fraction) with equivalence ratios of 0.5, 1.0, and 2.0 over the temperature range of 1200-1800 K and pressures of 2.0 atm and 10.0 atm were investigated. A detailed blend chemical kinetic model resulting from the merging of validated kinetic models for the components of the fuel blends was developed. The experimental observations indicate that the ignition delay times nonlinearly increase with an increase in the DMF addition level. Chemical kinetic analysis including radical pool analysis and flux analysis were conducted to explain the DMF addition effects. The kinetic analysis shows that at lower DMF blending levels, the two fuels have negligible impacts on the consumption pathways of each other.As the DMF addition increases to relatively higher levels, the consumption path of n-heptane is significantly changed due to the competition of small radicals, which primarily leads to the nonlinear increase in the ignition delay times of DMF/n-heptane blends. 展开更多
关键词 IGNITION DELAY time shock tube KINETIC model 2 5-dimethylfuran (DMF) N-HEPTANE
原文传递
Experimental and kinetic study on laminar flame speeds of ammonia/syngas/air at a high temperature and elevated pressure 被引量:1
3
作者 Geyuan YIN Chaojun WANG +3 位作者 Meng ZHOU Yajie ZHOU Erjiang HU zuohua huang 《Frontiers in Energy》 SCIE CSCD 2022年第2期263-276,共14页
The laminar flame speeds of ammonia mixed with syngas at a high pressure, temperature, and different syngas ratios were measured. The data obtained were fitted at different pressures, temperatures, syngas ratios, and ... The laminar flame speeds of ammonia mixed with syngas at a high pressure, temperature, and different syngas ratios were measured. The data obtained were fitted at different pressures, temperatures, syngas ratios, and equivalence ratios. Four kinetic models (the Glarborg model, Shrestha model, Mei model, and Han model) were compared and validated with experimental data. Pathway, sensitivity and radical pool analysis are conducted to find out the deep kinetic insight on ammonia oxidation and NO formation. The pathway analysis shows that H abstraction reactions and NHi combination reactions play important roles in ammonia oxidation. NO formation is closely related to H, OH, the O radical produced, and formation reactions. NO is mainly formed from reaction, HNO+ H= NO+ H2. Furthermore, both ammonia oxidation and NO formation are sensitive to small radical reactions and ammonia related reactions. 展开更多
关键词 ammonia mixed with syngas laminar flame speed kinetic model sensitivity analysis pathway analysis
原文传递
Development of a fan-stirred constant volume combustion chamber and turbulence measurement with PIV
4
作者 Haoran ZHAO Jinhua WANG +3 位作者 Xiao CAI Zhijian BIAN Hongchao DAI zuohua huang 《Frontiers in Energy》 SCIE CSCD 2022年第6期973-987,共15页
A fan-stirred combustion chamber is developed for spherically expanding flames,with P and T up to 10 bar and 473 K,respectively.Turbulence characteristics are estimated using particle image velocimetry(PIV)at differen... A fan-stirred combustion chamber is developed for spherically expanding flames,with P and T up to 10 bar and 473 K,respectively.Turbulence characteristics are estimated using particle image velocimetry(PIV)at different initial pressures(P=0.5-5 bar),fan frequencies(ω=0-2000 r/min),and impeller diameters(D=100 and 114 mm).The flame propagation of methanol/air is investigated at different turbulence intensities(u′=0-1.77 m/s)and equivalence ratios(f=0.7-1.5).The results show that u′is independent of P and proportional toω,which can be up to 3.5 m/s at 2000 r/min.L_(T)is independent of P and performs a power regression withωapproximately.The turbulent field is homogeneous and isotropic in the central region of the chamber while the inertial subrange of spatial energy spectrum is more collapsed to-5/3 law at a high Re_(T).Compared to laminar expanding flames,the morphology of turbulent expanding flames is wrinkled and the wrinkles will be finer with the growth of turbulence intensity,consistent with the decline of the Taylor scale and the Kolmogorov scale.The determined S_(L)in the present study is in good agreement with that of previous literature.The S_(L)and S_(T)of methanol/air have a non-monotonic trend with f while peak S_(T)is shifted to the richer side compared to S_(L).This indicates that the newly built turbulent combustion chamber is reliable for further experimental study. 展开更多
关键词 fan-stirred combustion chamber turbulence characteristics particle image velocimetry(PIV) methanol turbulent expanding flames
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部