Wearable gas sensors that are lightweight, portable, and inexpensive have great potential application in the real-time detection of human health and environmental monitoring. In this work, we fabricated flexible fiber...Wearable gas sensors that are lightweight, portable, and inexpensive have great potential application in the real-time detection of human health and environmental monitoring. In this work, we fabricated flexible fiber gas sensors with single-walled carbon nanotube (SWCNT), multi-walled carbon nanotube (MWCNT), and ZnO quantum dot-decorated SWCNT (SWCNTs@ZnO) sensing elements. These flexible fiber gas sensors could be operated at room temperature to detect target gases with good sensitivity and recovery time. They also exhibited superior long-term stability, as well as good device mechanical bending ability and robustness. Integrating these flexible gas sensors into face masks, the fabricated wearable smart face masks could be used to selectively detect CaHsOH, HCHO, and NH3 by reading the corresponding LEDs with different colors. Such face masks have great potential application in the Internet of Things and wearable electronics.展开更多
文摘Wearable gas sensors that are lightweight, portable, and inexpensive have great potential application in the real-time detection of human health and environmental monitoring. In this work, we fabricated flexible fiber gas sensors with single-walled carbon nanotube (SWCNT), multi-walled carbon nanotube (MWCNT), and ZnO quantum dot-decorated SWCNT (SWCNTs@ZnO) sensing elements. These flexible fiber gas sensors could be operated at room temperature to detect target gases with good sensitivity and recovery time. They also exhibited superior long-term stability, as well as good device mechanical bending ability and robustness. Integrating these flexible gas sensors into face masks, the fabricated wearable smart face masks could be used to selectively detect CaHsOH, HCHO, and NH3 by reading the corresponding LEDs with different colors. Such face masks have great potential application in the Internet of Things and wearable electronics.