期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
BreedingAIDB: A database integrating crop genome-to-phenotype paired data with machine learning tools applicable to breeding
1
作者 Zijie Shen Enhui Shen +4 位作者 Kun Yang zuoqian fan Qian-Hao Zhu Longjiang fan Chu-Yu Ye 《Plant Communications》 SCIE CSCD 2024年第7期12-15,共4页
Machine learning(ML)is one of the key technologies for next-generation breeding,and“big data”is the cornerstone for development of ML algorithms that are applicable to crop breeding practices.Currently,there is a sh... Machine learning(ML)is one of the key technologies for next-generation breeding,and“big data”is the cornerstone for development of ML algorithms that are applicable to crop breeding practices.Currently,there is a shortage of databases containing phenotype data and corresponding genomic data,i.e.,genome-to-phenotype(G2P)paired data,that can be used in the development of ML algorithms for breeding.To fill this gap,we constructed a user-friendly database named the BreedingAIDB(http://ibi.zju.edu.cn/BreedingAIDB)to provide breeders and ML experts with easily accessible G2P paired data for crops,as well as ML tools. 展开更多
关键词 DATABASE learning BREEDING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部