This paper presents an efficient technique for processing of 3D meshed surfaces via spherical wavelets. More specifically, an input 3D mesh is firstly transformed into a spherical vector signal by a fast low distortio...This paper presents an efficient technique for processing of 3D meshed surfaces via spherical wavelets. More specifically, an input 3D mesh is firstly transformed into a spherical vector signal by a fast low distortion spherical parameterization approach based on symmetry analysis of 3D meshes. This signal is then sampled on the sphere with the help of an adaptive sampling scheme. Finally, the sampled signal is transformed into the wavelet domain according to spherical wavelet transform where many 3D mesh processing operations can be implemented such as smoothing, enhancement, compression, and so on. Our main contribution lies in incorporating a fast low distortion spherical parameterization approach and an adaptive sampling scheme into the frame for pro- cessing 3D meshed surfaces by spherical wavelets, which can handle surfaces with complex shapes. A number of experimental ex- amples demonstrate that our algorithm is robust and efficient.展开更多
基金Supported by the National Natural Science Foundation of China(No.61173102)the NSFC Guangdong Joint Fund(No.U0935004)+2 种基金the Fundamental Research Funds for the Central Universities(No.DUT11SX08)the Opening Foundation of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education of China(No.93K172012K02)the Doctor Research Start-up Fund of North East Dian Li university(No.BSJXM-200912)
文摘This paper presents an efficient technique for processing of 3D meshed surfaces via spherical wavelets. More specifically, an input 3D mesh is firstly transformed into a spherical vector signal by a fast low distortion spherical parameterization approach based on symmetry analysis of 3D meshes. This signal is then sampled on the sphere with the help of an adaptive sampling scheme. Finally, the sampled signal is transformed into the wavelet domain according to spherical wavelet transform where many 3D mesh processing operations can be implemented such as smoothing, enhancement, compression, and so on. Our main contribution lies in incorporating a fast low distortion spherical parameterization approach and an adaptive sampling scheme into the frame for pro- cessing 3D meshed surfaces by spherical wavelets, which can handle surfaces with complex shapes. A number of experimental ex- amples demonstrate that our algorithm is robust and efficient.