Dynamic isotope effects on relaxation rate of quadrupolar nuclei are preliminarily reported. The relaxation rates of 17O and 14N in 12 simple organic molecules and their 18 corresponding deuterated species have been s...Dynamic isotope effects on relaxation rate of quadrupolar nuclei are preliminarily reported. The relaxation rates of 17O and 14N in 12 simple organic molecules and their 18 corresponding deuterated species have been systematically measured. The principal components of the molecular inertia tensors have been calculated. The results show that there is an intrinsic correlation between the dynamic isotope effects of the relaxation rate and the static isotope effects of the molecular inertia. The concepts of molecular collision frequency and translation-rotation coupling have been introduced into the NMR relaxation theory. Therefore, a reasonable explanation of the experimental results has been given.展开更多
基金Project supported by the Alexander von Humboldt-Foundation of Germany and the Chinese Academy of Sciences.
文摘Dynamic isotope effects on relaxation rate of quadrupolar nuclei are preliminarily reported. The relaxation rates of 17O and 14N in 12 simple organic molecules and their 18 corresponding deuterated species have been systematically measured. The principal components of the molecular inertia tensors have been calculated. The results show that there is an intrinsic correlation between the dynamic isotope effects of the relaxation rate and the static isotope effects of the molecular inertia. The concepts of molecular collision frequency and translation-rotation coupling have been introduced into the NMR relaxation theory. Therefore, a reasonable explanation of the experimental results has been given.