In this paper, by using the idea of truncated counting functions of meromorphic functions, we deal with the problem of uniqueness of the meromorphic functions whose certain nonlinear differential polynomials share one...In this paper, by using the idea of truncated counting functions of meromorphic functions, we deal with the problem of uniqueness of the meromorphic functions whose certain nonlinear differential polynomials share one finite nonzero value.展开更多
We mainly study the periodicity theorems of meromorphic functions having truncated or partial sharing values with their shifts, where meromorphic functions are of hyper order less than 1 and N(r, f) aT(r; f) for s...We mainly study the periodicity theorems of meromorphic functions having truncated or partial sharing values with their shifts, where meromorphic functions are of hyper order less than 1 and N(r, f) aT(r; f) for some positive number a.展开更多
Let κ be a positive integer and F be a family of meromorphic functions in a domain D such that for each f ∈ F, all poles of f are of multiplicity at least 2,and all zeros of f are of multiplicity at least κ + 1. L...Let κ be a positive integer and F be a family of meromorphic functions in a domain D such that for each f ∈ F, all poles of f are of multiplicity at least 2,and all zeros of f are of multiplicity at least κ + 1. Let α and b be two distinct finite complex numbers. If for each f ∈ F, all zeros of f;-α are of multiplicity at least 2,and for each pair of functions f, g ∈ F, f;and g;share b in D, then F is normal in D.展开更多
基金The NSF(11301076)of Chinathe NSF(2014J01004)of Fujian Province
文摘In this paper, by using the idea of truncated counting functions of meromorphic functions, we deal with the problem of uniqueness of the meromorphic functions whose certain nonlinear differential polynomials share one finite nonzero value.
基金The NSF(11301076)of Chinathe NSF(2014J01004,2018J01658)of Fujian Province of China
文摘We mainly study the periodicity theorems of meromorphic functions having truncated or partial sharing values with their shifts, where meromorphic functions are of hyper order less than 1 and N(r, f) aT(r; f) for some positive number a.
基金The NSF(11301076)of Chinathe NSF(2014J01004) of Fujian Province
文摘Let κ be a positive integer and F be a family of meromorphic functions in a domain D such that for each f ∈ F, all poles of f are of multiplicity at least 2,and all zeros of f are of multiplicity at least κ + 1. Let α and b be two distinct finite complex numbers. If for each f ∈ F, all zeros of f;-α are of multiplicity at least 2,and for each pair of functions f, g ∈ F, f;and g;share b in D, then F is normal in D.