Future electricity systems are challenged by deep decarbonization and concurrently increasing demand and there are growing concerns that renewables cannot shoulder this alone. Starting from the proven principle of div...Future electricity systems are challenged by deep decarbonization and concurrently increasing demand and there are growing concerns that renewables cannot shoulder this alone. Starting from the proven principle of diversity, we argue for keeping the nuclear option open or even for expanding its use. However, the perspectives are dim for the current technology as safety concerns and social aversion remain as fundamental problems. While looking for future revolutionary safe and more sustainable nuclear concepts we first review the main characteristics of civil nuclear energy, as well as its safety records and technical progress. We then list the key requirements for innovative nuclear systems designs which are less dependent on active safety systems and human performance as well as social stability. This allows us to provide a concept by concept comparison and assessment of existing and novel technologies and designs including different coolants and neutron spectra. The results indicate a high potential for far-reaching improvements compared to most advanced LWRs, although none of the candidate concepts meets all requirements convincingly, yet, helium cooled, small modular reactors (HTR-PM) come closest. We end by stressing the need for future research and development, and keeping human capital and know-how in nuclear energy;we call for an urgent increase in government and international RD&D funding by the order of a few hundreds of billions of USD per year, which will likely lead to breakthroughs that will restart productivity growth in severely affected stagnating modern economies.展开更多
In this paper, contactless transient photo-conductance measurements are applied to p-doped mono-crystalline Silicon (p-Si) coated by two different kinds of aluminum oxide (Al<sub>2</sub>O<sub>3</s...In this paper, contactless transient photo-conductance measurements are applied to p-doped mono-crystalline Silicon (p-Si) coated by two different kinds of aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) layers in order to study alternative routes to the standard atomic layer deposition (ALD). The aluminum oxides layers were deposited by either spin coating or ion layer gas reaction (ILGAR?). For both coatings an increase of the charge carrier life time is observed indicating a passivation of the p-Si surface. This study shows alternative deposition methods and the potential of transient photocon- ductance measurements for the elucidation of the origin of the passivation. We show that the passivation induced by coating deposited via ILGAR is at least partially due to charge carrier trapping and storage at the interface. It was also surprisingly found that for those coatings, annealing at 425℃ leads to a decrease of the life time. This points to temperature instability for both coatings.展开更多
For classical billiards, we suggest that a matrix of action or length of trajectories in conjunction with statistical measures, level spacing distribution and spectral rigidity, can be used to distinguish chaotic from...For classical billiards, we suggest that a matrix of action or length of trajectories in conjunction with statistical measures, level spacing distribution and spectral rigidity, can be used to distinguish chaotic from integrable systems. As examples of 2D chaotic billiards, we considered the Bunimovich stadium billiard and the Sinai billiard. In the level spacing distribution and spectral rigidity, we found GOE behaviour consistent with predictions from random matrix theory. We studied transport properties and computed a diffusion coefficient. For the Sinai billiard, we found normal diffusion, while the stadium billiard showed anomalous diffusion behaviour. As example of a 2D integrable billiard, we considered the rectangular billiard. We found very rigid behaviour with strongly correlated spectra similar to a Dirac comb. These findings present numerical evidence for universality in level spacing fluctuations to hold in classically integrable systems and in classically fully chaotic systems.展开更多
The hyperfine (hf) structure constants of three atomic niobium energy levels in the energy range around 23000 cm-1 (at 22936.90, 23010.58, and 23048.58 cm-1) are known with only limited accuracy, and the constants of ...The hyperfine (hf) structure constants of three atomic niobium energy levels in the energy range around 23000 cm-1 (at 22936.90, 23010.58, and 23048.58 cm-1) are known with only limited accuracy, and the constants of combining levels are sometimes even unknown. Thus we performed laser spectroscopic investigations in the wavelength range between 5600 and 6500 Å, and we excited altogether 16 transitions in which these lower levels are involved. Beside a more precise determination of the hf structure constants of the three lower levels (which were determined on several lines sharing a common upper level), these experiments led to the knowledge of the hf constants of nine levels with previously unknown constants. Beside these results, also the hf constants of 13 further energy levels are reported. For six of these levels, the constants were previously unknown.展开更多
文摘Future electricity systems are challenged by deep decarbonization and concurrently increasing demand and there are growing concerns that renewables cannot shoulder this alone. Starting from the proven principle of diversity, we argue for keeping the nuclear option open or even for expanding its use. However, the perspectives are dim for the current technology as safety concerns and social aversion remain as fundamental problems. While looking for future revolutionary safe and more sustainable nuclear concepts we first review the main characteristics of civil nuclear energy, as well as its safety records and technical progress. We then list the key requirements for innovative nuclear systems designs which are less dependent on active safety systems and human performance as well as social stability. This allows us to provide a concept by concept comparison and assessment of existing and novel technologies and designs including different coolants and neutron spectra. The results indicate a high potential for far-reaching improvements compared to most advanced LWRs, although none of the candidate concepts meets all requirements convincingly, yet, helium cooled, small modular reactors (HTR-PM) come closest. We end by stressing the need for future research and development, and keeping human capital and know-how in nuclear energy;we call for an urgent increase in government and international RD&D funding by the order of a few hundreds of billions of USD per year, which will likely lead to breakthroughs that will restart productivity growth in severely affected stagnating modern economies.
文摘In this paper, contactless transient photo-conductance measurements are applied to p-doped mono-crystalline Silicon (p-Si) coated by two different kinds of aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) layers in order to study alternative routes to the standard atomic layer deposition (ALD). The aluminum oxides layers were deposited by either spin coating or ion layer gas reaction (ILGAR?). For both coatings an increase of the charge carrier life time is observed indicating a passivation of the p-Si surface. This study shows alternative deposition methods and the potential of transient photocon- ductance measurements for the elucidation of the origin of the passivation. We show that the passivation induced by coating deposited via ILGAR is at least partially due to charge carrier trapping and storage at the interface. It was also surprisingly found that for those coatings, annealing at 425℃ leads to a decrease of the life time. This points to temperature instability for both coatings.
文摘For classical billiards, we suggest that a matrix of action or length of trajectories in conjunction with statistical measures, level spacing distribution and spectral rigidity, can be used to distinguish chaotic from integrable systems. As examples of 2D chaotic billiards, we considered the Bunimovich stadium billiard and the Sinai billiard. In the level spacing distribution and spectral rigidity, we found GOE behaviour consistent with predictions from random matrix theory. We studied transport properties and computed a diffusion coefficient. For the Sinai billiard, we found normal diffusion, while the stadium billiard showed anomalous diffusion behaviour. As example of a 2D integrable billiard, we considered the rectangular billiard. We found very rigid behaviour with strongly correlated spectra similar to a Dirac comb. These findings present numerical evidence for universality in level spacing fluctuations to hold in classically integrable systems and in classically fully chaotic systems.
文摘The hyperfine (hf) structure constants of three atomic niobium energy levels in the energy range around 23000 cm-1 (at 22936.90, 23010.58, and 23048.58 cm-1) are known with only limited accuracy, and the constants of combining levels are sometimes even unknown. Thus we performed laser spectroscopic investigations in the wavelength range between 5600 and 6500 Å, and we excited altogether 16 transitions in which these lower levels are involved. Beside a more precise determination of the hf structure constants of the three lower levels (which were determined on several lines sharing a common upper level), these experiments led to the knowledge of the hf constants of nine levels with previously unknown constants. Beside these results, also the hf constants of 13 further energy levels are reported. For six of these levels, the constants were previously unknown.