Silver nanoparticles in the range of 10-40 nm were synthesized chemically and by laser ablation, em- ployed for in vitro antibacterial action against human pathogenic bacterium. Their formation was evidenced by UV-vis...Silver nanoparticles in the range of 10-40 nm were synthesized chemically and by laser ablation, em- ployed for in vitro antibacterial action against human pathogenic bacterium. Their formation was evidenced by UV-visible spectrophotometer; particle size confirmed by atomic force microscopy, crystal structure determined by X-ray diffraction and chemical composition investigated by Fourier transform infrared spec- troscopy. The calculated MIC (minimum inhibitory concentration) of chemically synthesized nanoparticles with 30-40 nm in size are 2.8 μg/mL 4.37 μg/mL 13.5μg/mL and 2.81 p.g/mL for E. coil, S. aureus, B. subtillis and Salmonella, respectively. Whereas laser ablated nanoparticles exhibit MIC of 2.10 μg/mL 2.36 μg/ mL and 2.68 μg/mL for E. coli, S. aureus and Salmonella, respectively.展开更多
Copper nanoparticles(Cu NPs) have been synthesized by using laser ablation method,using deionized water as main solvent.The formation of Cu NPs is confirmed by UV-visible spectrophotometer(UV-Vis),atomic force mic...Copper nanoparticles(Cu NPs) have been synthesized by using laser ablation method,using deionized water as main solvent.The formation of Cu NPs is confirmed by UV-visible spectrophotometer(UV-Vis),atomic force microscopy(AFM) and X-ray diffraction(XRD).Cu NPs fabricated by laser ablation have diameter in the range from 14 to 55 nm.Structural analysis revealed the face-centered cubic(fcc) crystal structure of Cu NPs.The antibacterial activity of Cu NPs has been evaluated in vitro against strains of Escherichia coli(E.coli) and Staphylococcus aureus(5.aureus).The fabricated Cu NPs show considerable antibacterial activity against both bacterial strains.The bacterial activity of Cu NPs was found to depend on the microbial species.展开更多
文摘Silver nanoparticles in the range of 10-40 nm were synthesized chemically and by laser ablation, em- ployed for in vitro antibacterial action against human pathogenic bacterium. Their formation was evidenced by UV-visible spectrophotometer; particle size confirmed by atomic force microscopy, crystal structure determined by X-ray diffraction and chemical composition investigated by Fourier transform infrared spec- troscopy. The calculated MIC (minimum inhibitory concentration) of chemically synthesized nanoparticles with 30-40 nm in size are 2.8 μg/mL 4.37 μg/mL 13.5μg/mL and 2.81 p.g/mL for E. coil, S. aureus, B. subtillis and Salmonella, respectively. Whereas laser ablated nanoparticles exhibit MIC of 2.10 μg/mL 2.36 μg/ mL and 2.68 μg/mL for E. coli, S. aureus and Salmonella, respectively.
文摘Copper nanoparticles(Cu NPs) have been synthesized by using laser ablation method,using deionized water as main solvent.The formation of Cu NPs is confirmed by UV-visible spectrophotometer(UV-Vis),atomic force microscopy(AFM) and X-ray diffraction(XRD).Cu NPs fabricated by laser ablation have diameter in the range from 14 to 55 nm.Structural analysis revealed the face-centered cubic(fcc) crystal structure of Cu NPs.The antibacterial activity of Cu NPs has been evaluated in vitro against strains of Escherichia coli(E.coli) and Staphylococcus aureus(5.aureus).The fabricated Cu NPs show considerable antibacterial activity against both bacterial strains.The bacterial activity of Cu NPs was found to depend on the microbial species.