Ti3SiC2-reintbrced Ag-maJxix composites are expected to serve as eleclrical contacts. In this study, the wettability of Ag on a Ti3SiC2 subslxate was measured by the sessile drop melkod. The Ag-Ti3SiC2 composites were...Ti3SiC2-reintbrced Ag-maJxix composites are expected to serve as eleclrical contacts. In this study, the wettability of Ag on a Ti3SiC2 subslxate was measured by the sessile drop melkod. The Ag-Ti3SiC2 composites were prepared from Ag mad Ti3SiC2 powder mix- tures by pressureless sintering. The effects of compacting pressure (100-800 MPa), sintering temperature (850-950~C), mad soaking time (0.5-2 h) on the microslxucture mad properties of the Ag-Ti3SiC2 composites were investigated. The experimental results indicated that Ti3SiC2 paxticulates were uniformly distxibuted in flae Ag matrix, wiflaout reactions at the interthces between flae two phases. The prepared Ag-10wt%Ti3SiC2 had a relative density of 95% mad an electrical resistivity of 2.76 x 10 3 m~)'cm when compacted at 800 MPa mad sintered at 950~C for 1 h. The incorporation of Ti3SiC2 into Ag was found to improve its hardness without substantially compromising its electrical conductivity; INs behavior was attxibuted to the combination of ceramic and metallic properties of the Ti3SiC2 reinforcement, suggesting its potential application in electrical contacts.展开更多
Ti_(3)AlC_(2)-reinforced Ag-based composites,which are used as sliding current collectors,electrical contacts,and electrode materials,exhibit remarkable performances.However,the interfacial reactions between Ag and Ti...Ti_(3)AlC_(2)-reinforced Ag-based composites,which are used as sliding current collectors,electrical contacts,and electrode materials,exhibit remarkable performances.However,the interfacial reactions between Ag and Ti_(3)AlC_(2) significantly degrade the electrical and thermal properties of these composites.To diminish these interfacial reactions,we fabricated carbon-coated Ti_(3)AlC_(2) particles(C@Ti_(3)AlC_(2))as reinforcement and prepared Ag–10wt%C@Ti_(3)AlC_(2) composites with carbon-layer thicknesses ranging from 50–200 nm.Compared with the uncoated Ag–Ti_(3)AlC_(2) composite,Ag–C@Ti_(3)AlC_(2) was found to have a better distribution of Ti_(3)AlC_(2) particles.With increases in the carbon-layer thickness,the Vickers hardness value and relative density of Ag–C@Ti_(3)AlC_(2) gradually decreases.With a carbon-layer thickness of 150 nm,we obtained the lowest resistivity of Ag–C@Ti_(3)AlC_(2) of 29.4135.5×10^(−9)Ω·m,which is half that of Ag–Ti_(3)AlC_(2)(66.7×10^(−9)Ω·m).The thermal conductivity of Ag–C@Ti_(3)AlC_(2) reached a maximum value of 135.5 W·m^(−1)·K^(−1) with a 200-nm carbon coating(~1.8 times that of Ag–Ti_(3)AlC_(2)).These results indicate that the carbon-coating method is a feasible strategy for improving the performance of Ag–C@Ti_(3)AlC_(2) composites.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51731004,51671054,and 51501038)“the Fundamental Research Funds for the Central Universities”in China
文摘Ti3SiC2-reintbrced Ag-maJxix composites are expected to serve as eleclrical contacts. In this study, the wettability of Ag on a Ti3SiC2 subslxate was measured by the sessile drop melkod. The Ag-Ti3SiC2 composites were prepared from Ag mad Ti3SiC2 powder mix- tures by pressureless sintering. The effects of compacting pressure (100-800 MPa), sintering temperature (850-950~C), mad soaking time (0.5-2 h) on the microslxucture mad properties of the Ag-Ti3SiC2 composites were investigated. The experimental results indicated that Ti3SiC2 paxticulates were uniformly distxibuted in flae Ag matrix, wiflaout reactions at the interthces between flae two phases. The prepared Ag-10wt%Ti3SiC2 had a relative density of 95% mad an electrical resistivity of 2.76 x 10 3 m~)'cm when compacted at 800 MPa mad sintered at 950~C for 1 h. The incorporation of Ti3SiC2 into Ag was found to improve its hardness without substantially compromising its electrical conductivity; INs behavior was attxibuted to the combination of ceramic and metallic properties of the Ti3SiC2 reinforcement, suggesting its potential application in electrical contacts.
基金financial support of the National Natural Science Foundation of China(Nos.51731004 and 51671054)the Natural Science Foundation of Jiangsu Province(No.BK20181285)the Fundamental Research Funds for the Central Universities,China(No.2242019K 40056).
文摘Ti_(3)AlC_(2)-reinforced Ag-based composites,which are used as sliding current collectors,electrical contacts,and electrode materials,exhibit remarkable performances.However,the interfacial reactions between Ag and Ti_(3)AlC_(2) significantly degrade the electrical and thermal properties of these composites.To diminish these interfacial reactions,we fabricated carbon-coated Ti_(3)AlC_(2) particles(C@Ti_(3)AlC_(2))as reinforcement and prepared Ag–10wt%C@Ti_(3)AlC_(2) composites with carbon-layer thicknesses ranging from 50–200 nm.Compared with the uncoated Ag–Ti_(3)AlC_(2) composite,Ag–C@Ti_(3)AlC_(2) was found to have a better distribution of Ti_(3)AlC_(2) particles.With increases in the carbon-layer thickness,the Vickers hardness value and relative density of Ag–C@Ti_(3)AlC_(2) gradually decreases.With a carbon-layer thickness of 150 nm,we obtained the lowest resistivity of Ag–C@Ti_(3)AlC_(2) of 29.4135.5×10^(−9)Ω·m,which is half that of Ag–Ti_(3)AlC_(2)(66.7×10^(−9)Ω·m).The thermal conductivity of Ag–C@Ti_(3)AlC_(2) reached a maximum value of 135.5 W·m^(−1)·K^(−1) with a 200-nm carbon coating(~1.8 times that of Ag–Ti_(3)AlC_(2)).These results indicate that the carbon-coating method is a feasible strategy for improving the performance of Ag–C@Ti_(3)AlC_(2) composites.