In recent years, DNA supramolecular hydrogels have attracted much attention due to their injectability, biocompatibility, responsiveness and self-healing properties. In this work, we designed a linear DNA brick contai...In recent years, DNA supramolecular hydrogels have attracted much attention due to their injectability, biocompatibility, responsiveness and self-healing properties. In this work, we designed a linear DNA brick containing one duplex with two cytosine(C)-rich sequence on both ends. This brick can first assemble to form duplex under p H 8 condition. After adjusting the p H to 5, the C-rich sequence tends to form intermolecular i-motif structure, which joins the linear DNA molecules together to form interlocked cyclic structures and yield the DNA hydrogel. By adjusting the length and bending curvature of the duplex part of the molecule, one can change the basic unit of the hydrogel structure to tune the properties of the DNA hydrogel.展开更多
基金financially supported by the National Basic Research Program of China(973 program,No.2013CB932803)the National Natural Science Foundation of China(No.21534007)the Beijing Municipal Science&Technology Commission
文摘In recent years, DNA supramolecular hydrogels have attracted much attention due to their injectability, biocompatibility, responsiveness and self-healing properties. In this work, we designed a linear DNA brick containing one duplex with two cytosine(C)-rich sequence on both ends. This brick can first assemble to form duplex under p H 8 condition. After adjusting the p H to 5, the C-rich sequence tends to form intermolecular i-motif structure, which joins the linear DNA molecules together to form interlocked cyclic structures and yield the DNA hydrogel. By adjusting the length and bending curvature of the duplex part of the molecule, one can change the basic unit of the hydrogel structure to tune the properties of the DNA hydrogel.