期刊文献+
共找到1,355篇文章
< 1 2 68 >
每页显示 20 50 100
Three-Dimensional Multi-Phase Microscopic Simulation of Service Life of Recycled Large Aggregate Self-Compacting Concrete
1
作者 jing li lina Gao +3 位作者 libo liu liao Zhang Jianhua Zheng jing Gao 《Journal of Materials Science and Chemical Engineering》 2024年第4期126-135,共10页
Recycled large aggregate self-compacting concrete (RLA-SCC) within multiple weak areas. These weak areas have poor resistance to chloride ion erosion, which affects the service life of RLA-SCC in the marine environmen... Recycled large aggregate self-compacting concrete (RLA-SCC) within multiple weak areas. These weak areas have poor resistance to chloride ion erosion, which affects the service life of RLA-SCC in the marine environment. A three-dimensional multi-phase mesoscopic numerical model of RLA-SCC was established to simulate the chloride ions transportation in concrete. Experiments of RLA-SCC immersing in chloride solution were carried out to verify the simulation results. The effects of recycled large aggregate (RLA) content and RLA particle size on the service life of concrete were explored. The results indicate that the mesoscopic numerical simulation results are in good agreement with the experimental results. At the same depth, the closer to the surface of the RLA, the greater the chloride ion concentration. The service life of RLA-SCC in marine environment decreases with the increase of RLA content. Compared with the service life of 20% content, the service life of 25% and 30% content decreased by 20% and 42% respectively. Increasing the particle size of RLA can effectively improve the service life of RLA-SCC in chloride environment. Compared with the service life of 50 mm particle size, the service life of 70 mm and 90 mm increased by 61% and 163%, respectively. . 展开更多
关键词 Recycled Large Aggregate Self-Compacting Concrete Mesoscopic Mode Chloride Ion Diffusion Numerical Analysis
下载PDF
A layered multifunctional framework based on polyacrylonitrile and MOF derivatives for stable lithium metal anode
2
作者 Fanfan liu Peng Zuo +5 位作者 jing li Pengcheng Shi Yu Shao linwei Chen Yihong Tan Tao Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期282-288,I0007,共8页
Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition be... Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks. 展开更多
关键词 Lithium metal anode Layered multifunctional framework Ions flux redistribution Electrical insulation/conduction structure Uniform Li deposition
下载PDF
The NAC transcription factor LuNAC61 negatively regulates fiber development in flax (Linum usitatissimum L.)
3
作者 Dongwei Xie jing li +5 位作者 Wan li lijun Sun Zhigang Dai Wenzhi Zhou Jianguang Su Jian Sun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期795-805,共11页
Flax is a crucial fiber crop that exhibits excellent textile properties and serves as a model plant for investigating phloem fiber development. The regulation of multiple genes significantly influences fiber developme... Flax is a crucial fiber crop that exhibits excellent textile properties and serves as a model plant for investigating phloem fiber development. The regulation of multiple genes significantly influences fiber development, notably involving NAC(NAM, ATAF1/2, CUC2) transcription factors in forming the fiber secondary cell wall(SCW).Overexpression of LuNAC61 in flax resulted in sparse top meristematic zone leaves and significantly reduced stem cellulose content. Scanning electron microscopy and staining observations revealed a significant reduction in fiber bundles. β-Glucuronidase(GUS) staining analysis demonstrated high activity of the LuNAC61 promoter in the bast fibers of the flax stem. Additionally, several members of the LuPLATZ and LuCesA families exhibited significant coexpression with LuNAC61. Subcellular localization indicated the presence of LuPLATZ24 protein in the nucleus and cytoplasm, LuNAC61 protein exclusively in the nucleus, and LuCesA10 in the nucleus and endoplasmic reticulum. LuPLATZ24 positively regulates LuNAC61, whereas LuNAC61 negatively affects LuCesA10, suggesting the involvement of a metabolic network in regulating flax fiber development. In conclusion, this study provides a critical opportunity for a comprehensive and in-depth analysis of the mechanisms governing flax fiber development and the potential use of biotechnology to enhance flax fiber yield. 展开更多
关键词 FLAX fiber development Lu NAC61 gene function gene interaction
下载PDF
Fluid-chemical modeling of the near-cathode sheath formation process in a high current broken in DC air circuit breaker
4
作者 彭世东 李静 +3 位作者 段薇 曹云东 刘树鑫 黄浩 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期523-538,共16页
When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop thr... When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop through the near-electrode sheath is an important means to build up the arc voltage, which directly determines the current-limiting performance of the DCCB. A numerical model to describe the near-electrode sheath formation process can provide insight into the physical mechanism of the arc formation, and thus provide a method for arc energy regulation. In this work, we establish a two-dimensional axisymmetric time-varying model of a medium-voltage DCCB arc when interrupted by high current based on a fluid-chemical model involving 16 kinds of species and 46 collision reactions. The transient distributions of electron number density, positive and negative ion number density, net space charge density, axial electric field, axial potential between electrodes, and near-cathode sheath are obtained from the numerical model. The computational results show that the electron density in the arc column increases, then decreases, and then stabilizes during the near-cathode sheath formation process, and the arc column's diameter gradually becomes wider. The 11.14 V–12.33 V drops along the17 μm space charge layer away from the cathode(65.5 k V/m–72.5 k V/m) when the current varies from 20 k A–80 k A.The homogeneous external magnetic field has little effect on the distribution of particles in the near-cathode sheath core,but the electron number density at the near-cathode sheath periphery can increase as the magnetic field increases and the homogeneous external magnetic field will lead to arc diffusion. The validity of the numerical model can be proven by comparison with the experiment. 展开更多
关键词 near-cathode sheath atmospheric pressure air arc fluid-chemical model high current DC air circuit breaker(DCCB)
下载PDF
Tuning the crystalline and electronic structure of ZrO_(2)via oxygen vacancies and nano-structuring for polysulfides conversion in lithium-sulfur batteries
5
作者 Shengnan Fu Chaowei Hu +5 位作者 jing li Hongtao Cui Yuanyuan liu Kaihua liu Yanzhao Yang Meiri Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期82-93,I0003,共13页
The recent emergence of tetragonal phases zirconium dioxide(ZrO_(2))with vacancies has generated significant interest as a highly efficient and stable electrocatalyst with potential applications in trapping polysulfid... The recent emergence of tetragonal phases zirconium dioxide(ZrO_(2))with vacancies has generated significant interest as a highly efficient and stable electrocatalyst with potential applications in trapping polysulfides and facilitating rapid conversion in lithium-sulfur batteries(LSBs).However,the reduction of ZrO_(2)is challenging,even under strong reducing atmospheres at high temperatures and pressures.Consequently,the limited presence of oxygen vacancies results in insufficient active sites and reaction interfaces,thereby hindering practical implementation.Herein,we successfully introduced abundant oxygen vacancies into ZrO_(2)at the nanoscale with the help of carbon nanotubes(CNTs-OH)through hydrogen-etching at lower temperatures and pressures.The introduced oxygen vacancies on ZrO_(2-x)/CNTs-OH can effectively rearrange charge distribution,enhance sulfiphilicity and increase active sites,contributing to high ionic and electronic transfer kinetics,strong binding energy and low redox barriers between polysulfides and ZrO_(2-x).These findings have been experimentally validated and supported by theory calculations.As a result,LSBs assembled with the ZrO_(2-x)/CNTs-OH modified separators demonstrate excellent rate performance,superior cycling stability,and ultra-high sulfur utilization.Especially,at high sulfur loading of 6 mg cm^(-2),the area capacity is still up to 6.3 mA h cm^(-2).This work provides valuable insights into the structural and functional optimization of electrocatalysts for batteries. 展开更多
关键词 Lithium-sulfur batteries Oxygen vacancies Zirconium dioxide/carbon nanotubes with–OH Improved redox kinetics Superior cycling stability
下载PDF
Overexpression of TRPV1 activates autophagy in human lens epithelial cells under hyperosmotic stress through Ca^(2+)-dependent AMPK/mTOR pathway
6
作者 liu-Hui Huang Jiao Lyu +6 位作者 Sheng Chen Ting-Yi liang Yu-Qing Rao Ping Fei jing li Hai-Ying Jin Pei-Quan Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第3期420-434,共15页
●AIM:To explore whether autophagy functions as a cellular adaptation mechanism in lens epithelial cells(LECs)under hyperosmotic stress.●METHODS:LECs were treated with hyperosmotic stress at the concentration of 270,... ●AIM:To explore whether autophagy functions as a cellular adaptation mechanism in lens epithelial cells(LECs)under hyperosmotic stress.●METHODS:LECs were treated with hyperosmotic stress at the concentration of 270,300,400,500,or 600 mOsm for 6,12,18,24h in vitro.Polymerase chain reaction(PCR)was employed for the mRNA expression of autophagyrelated genes,while Western blotting detected the targeted protein expression.The transfection of stub-RFP-sens-GFPLC3 autophagy-related double fluorescence lentivirus was conducted to detect the level of autophagy flux.Scanning electron microscopy was used to detect the existence of autolysosome.Short interfering RNA of autophagy-related gene(ATG)7,transient receptor potential vanilloid(TRPV)1 overexpression plasmid,related agonists and inhibitors were employed to their influence on autophagy related pathway.Flow cytometry was employed to test the apoptosis and intracellular Ca^(2+)level.Mitochondrial membrane potential was measured by JC-1 staining.The cell counting kit-8 assay was used to calculate the cellular viability.The wound healing assay was used to evaluate the wound closure rate.GraphPad 6.0 software was utilized to evaluate the data.●RESULTS:The hyperosmotic stress activated autophagy in a pressure-and time-dependent manner in LECs.Beclin 1 protein expression and conversion of LC3B II to LC3B I increased,whereas sequestosome-1(SQSTM1)protein expression decreased.Transient Ca^(2+)influx was stimulated caused by hyperosmotic stress,levels of mammalian target of rapamycin(mTOR)phosphorylation decreased,and the level of AMP-activated protein kinase(AMPK)phosphorylation increased in the early stage.Based on this evidence,autophagy activation through the Ca^(2+)-dependent AMPK/mTOR pathway might represent an adaptation process in LECs under hyperosmotic stress.Hyperosmotic stress decreased cellular viability and accelerated apoptosis in LECs and cellular migration decreased.Inhibition of autophagy by ATG7 knockdown had similar results.TRPV1 overexpression increased autophagy and might be crucial in the occurrence of autophagy promoted by hyperosmotic stress.●CONCLUSION:A combination of hyperosmotic stress and autophagy inhibition may be a promising approach to decrease the number of LECs in the capsular bag and pave the way for improving prevention of posterior capsular opacification and capsular fibrosis. 展开更多
关键词 CATARACT posterior capsular opacification lens epithelial cell hyperosmotic stress AUTOPHAGY apoptosis transient receptor potential vanilloid 1
下载PDF
Numerical Analysis of Perforation during Hydraulic Fracture Initiation Based on Continuous-Discontinuous Element Method
7
作者 Rui Zhang lixiangW ang +2 位作者 jing li Chun Feng Yiming Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期2103-2129,共27页
Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations.Optimizing perforation designs is critical for augmenting the... Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations.Optimizing perforation designs is critical for augmenting the efficacy of hydraulic fracturing and boosting oil or gas production.In this study,we employ a hybrid finite-discrete element method,known as the continuous–discontinuous element method(CDEM),to simulate the initiation of post-perforation hydraulic fractures and to derive enhanced design parameters.The model incorporates the four most prevalent perforation geometries,as delineated in an engineering technical report.Real-world perforations deviate from the ideal cylindrical shape,exhibiting variable cross-sectional profiles that typically manifest as an initial constriction followed by an expansion,a feature consistent across all four perforation types.Our simulations take into account variations in perforation hole geometries,cross-sectional diameters,and perforation lengths.The findings show that perforations generated by the 39g DP3 HMX perforating bullet yield the lowest breakdown pressure,which inversely correlates with increases in sectional diameter and perforation length.Moreover,this study reveals the relationship between breakdown pressure and fracture degree,providing valuable insights for engineers and designers to refine perforation strategies. 展开更多
关键词 Hydraulic fracturing real perforation shape breakdown pressure perforation layout design CDEM
下载PDF
Reduction of the oxidative damage to H_(2)O_(2)-induced HepG2 cells via the Nrf2 signalling pathway by plant flavonoids Quercetin and Hyperoside
8
作者 Meijing Zhang Gaoshuai Zhang +10 位作者 Xiangxing Meng Xinxin Wang Jiao Xie Shaoshu Wang Biao Wang Jilite Wang Suwen liu Qun Huang Xu Yang jing li Hao Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1864-1876,共13页
Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pat... Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside. 展开更多
关键词 HYPEROSIDE QUERCETIN HepG2 cell Oxidative damage Nrf2 signalling pathway
下载PDF
Artificial intelligence for the detection of glaucoma with SD-OCT images:a systematic review and Meta-analysis
9
作者 Nan-Nan Shi jing li +1 位作者 Guang-Hui liu Ming-Fang Cao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第3期408-419,共12页
●AIM:To quantify the performance of artificial intelligence(AI)in detecting glaucoma with spectral-domain optical coherence tomography(SD-OCT)images.●METHODS:Electronic databases including PubMed,Embase,Scopus,Scien... ●AIM:To quantify the performance of artificial intelligence(AI)in detecting glaucoma with spectral-domain optical coherence tomography(SD-OCT)images.●METHODS:Electronic databases including PubMed,Embase,Scopus,ScienceDirect,ProQuest and Cochrane Library were searched before May 31,2023 which adopted AI for glaucoma detection with SD-OCT images.All pieces of the literature were screened and extracted by two investigators.Meta-analysis,Meta-regression,subgroup,and publication of bias were conducted by Stata16.0.The risk of bias assessment was performed in Revman5.4 using the QUADAS-2 tool.●RESULTS:Twenty studies and 51 models were selected for systematic review and Meta-analysis.The pooled sensitivity and specificity were 0.91(95%CI:0.86–0.94,I2=94.67%),0.90(95%CI:0.87–0.92,I2=89.24%).The pooled positive likelihood ratio(PLR)and negative likelihood ratio(NLR)were 8.79(95%CI:6.93–11.15,I2=89.31%)and 0.11(95%CI:0.07–0.16,I2=95.25%).The pooled diagnostic odds ratio(DOR)and area under curve(AUC)were 83.58(95%CI:47.15–148.15,I2=100%)and 0.95(95%CI:0.93–0.97).There was no threshold effect(Spearman correlation coefficient=0.22,P>0.05).●CONCLUSION:There is a high accuracy for the detection of glaucoma with AI with SD-OCT images.The application of AI-based algorithms allows together with“doctor+artificial intelligence”to improve the diagnosis of glaucoma. 展开更多
关键词 artificial intelligence spectral-domain optical coherence tomography GLAUCOMA META-ANALYSIS
下载PDF
Mechanical reliable,NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life
10
作者 Tengjia Gao Na li +4 位作者 Yang Yang jing li Peng Ji Yunlong Zhou Jianxiong Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期63-73,共11页
Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to dras... Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span. 展开更多
关键词 Flexible zinc ion supercapacitor Hydrogel electrolyte Self-healing Anti-freezing
下载PDF
Prevalence and risk factors of depression among patients with perianal fistulizing Crohn’s disease
11
作者 jing li Wing-Yi Ng +5 位作者 li-Chao Qiao Fen Yuan Xing Lan li-Bei Zhu Bo-lin Yang Zhong-Qiu Wang 《World Journal of Psychiatry》 SCIE 2024年第5期715-725,共11页
BACKGROUND Psychological distress,especially depression,associated with perianal fistulizing Crohn’s disease(PFCD)is widespread and refractory.However,there is a surprising paucity of studies to date that have sought... BACKGROUND Psychological distress,especially depression,associated with perianal fistulizing Crohn’s disease(PFCD)is widespread and refractory.However,there is a surprising paucity of studies to date that have sought to identify the prevalence and risk factors of depression associated with PFCD.AIM To estimate the prevalence of depressive symptoms and investigate the depression-related risk factors in patients with PFCD.METHODS The study was conducted in the form of survey and clinical data collection via questionnaire and specialized medical staff.Depressive symptoms,life quality,and fatigue severity of patients with PFCD were assessed by Patient Health Questionnaire-9,Inflammatory Bowel Disease Patient Quality of Life Questionnaire(IBDQ),and Inflammatory Bowel Disease(IBD)Fatigue Patient Self-assessment Scale.The basic demographic information,overall disease features,perianal clinical information,and laboratory inflammation indicators were also gathered.Multivariate regression analysis was ultimately used to ascertain the risk factors of depression associated with PFCD.RESULTS A total of 123 patients with PFCD were involved,and 56.91%were suffering from depression.According to multivariate logistic regression analysis,Perianal Disease Activity Index(PDAI)score[odds ratio(OR)=0.69,95%confidence interval(CI):0.50 to 0.95],IBDQ score(OR=0.93,95%CI:0.88 to 0.97),modified Van Assche index(OR=1.24,95%CI:1.01 to 1.53),and IBD Fatigue score(OR=1.72,95%CI:1.23 to 2.42)were independent risk factors of depression-related prevalence among patients with PFCD(P<0.05).Multiple linear regression analysis revealed that the increasing perianal modified Van Assche index(βvalue=0.166,95%CI:0.02 to 0.31)and decreasing IBDQ score(βvalue=-0.116,95%CI:-0.14 to-0.09)were independently associated with the severity of depression(P<0.05).CONCLUSION Depressive symptoms in PFCD patients have significantly high prevalence.PDAI score,modified Van Assche index,quality of life,and fatigue severity were the main independent risk factors. 展开更多
关键词 Crohn’s disease FISTULA DEPRESSION Inflammatory bowel diseases Risk factors
下载PDF
Characterization of acute-on-chronic liver diseases: A multicenter prospective cohort study
12
作者 Yuan-Yao Zhang Sen Luo +38 位作者 Hai li Shu-Ning Sun Xian-Bo Wang Xin Zheng Yan Huang Bei-ling li Yan-Hang Gao Zhi-Ping Qian Feng liu Xiao-Bo Lu Jun-Ping liu Hao-Tang Ren Yu-Bao Zheng Hua-Dong Yan Guo-Hong Deng liang Qiao Yan Zhang Wen-Yi Gu Xiao-Mei Xiang Yi Zhou Yi-Xin Hou Qun Zhang Yan Xiong Cong-Cong Zou Jun Chen Ze-Bing Huang Xiu-Hua Jiang Ting-Ting Qi Yuan-Yuan Chen Na Gao Chun-Yan liu Wei Yuan Xue Mei jing li Tao li Rong-Jiong Zheng Xin-Yi Zhou Jun Zhao Zhong-Ji Meng 《World Journal of Hepatology》 2024年第5期809-821,共13页
BACKGROUND Acute-on-chronic liver disease(AoCLD)accounts for the majority of patients hospitalized in the Department of Hepatology or Infectious Diseases.AIM To explore the characterization of AoCLD to provide theoret... BACKGROUND Acute-on-chronic liver disease(AoCLD)accounts for the majority of patients hospitalized in the Department of Hepatology or Infectious Diseases.AIM To explore the characterization of AoCLD to provide theoretical guidance for the accurate diagnosis and prognosis of AoCLD.METHODS Patients with AoCLD from the Chinese Acute-on-Chronic Liver Failure(ACLF)study cohort were included in this study.The clinical characteristics and outcomes,and the 90-d survival rate associated with each clinical type of AoCLD were analyzed,using the Kaplan-Meier method and the log-rank test.RESULTS A total of 3375 patients with AoCLD were enrolled,including 1679(49.7%)patients with liver cirrhosis acute decompensation(LC-AD),850(25.2%)patients with ACLF,577(17.1%)patients with chronic hepatitis acute exacer-bation(CHAE),and 269(8.0%)patients with liver cirrhosis active phase(LC-A).The most common cause of chronic liver disease(CLD)was HBV infection(71.4%).The most common precipitants of AoCLD was bacterial infection(22.8%).The 90-d mortality rates of each clinical subtype of AoCLD were 43.4%(232/535)for type-C ACLF,36.0%(36/100)for type-B ACLF,27.0%(58/215)for type-A ACLF,9.0%(151/1679)for LC-AD,3.0%(8/269)for LC-A,and 1.2%(7/577)for CHAE.CONCLUSION HBV infection is the main cause of CLD,and bacterial infection is the main precipitant of AoCLD.The most common clinical type of AoCLD is LC-AD.Early diagnosis and timely intervention are needed to reduce the mortality of patients with LC-AD or ACLF. 展开更多
关键词 Acute-on-chronic liver disease Acute-on-chronic liver failure Liver cirrhosis Clinical features PROGNOSIS
下载PDF
Analyzing the pharmacological substances and targets of Xuefu Zhuyu decoction in hypertensive vascular endothelial cells
13
作者 Rui-Xue Chen jing li +3 位作者 Guo-Zhen Dong Sheng-Yan Qiao Xiao Hu li-Guo Chen 《Clinical Research Communications》 2024年第1期3-10,共8页
Background:Xuefu Zhuyu decoction(XFZY)could significantly improve the function of hypertensive vascular endothelial cells,but the targets and mechanism are not clear.This study is to analyze the pharmacological substa... Background:Xuefu Zhuyu decoction(XFZY)could significantly improve the function of hypertensive vascular endothelial cells,but the targets and mechanism are not clear.This study is to analyze the pharmacological substances and targets of Xuefu Zhuyu decoction in hypertensive vascular endothelial cells.Methods:This study used Xuefu Zhuyu decoction to intervene human umbilical vein endothelial cells incubated by hypertensive patients’serum,then detected the function of vascular endothelial cells.The aqueous extract of XFZY was analyzed and validated by liquid chromatography-mass spectrometry technology;Finally,macromolecular docking technology was used to analyze the potential active substances and targets of XFZY in the prevention and treatment of hypertension.Results:Compared with the model group,the XFZY group showed a significant increase in NO expression(P<0.01)and a significant decrease in ET-1 expression(P<0.001);and the expression of BIP,P-JNK,CHOP,and BAX in XFZY group cells was significantly decreased(P<0.001),while the expression of JNK and BCL2 was significantly increased(P<0.001).19 main compounds were identified in XFZY and there were 3 pairs of molecular complexes with high affinity for markers of the endoplasmic reticulum stress,including BIP-Hesperidin complex,BIP-HSYA complex and JNK-Naringin complex.Conclusion:This study analyzed the potential pharmacodynamic substance and targets of Xuefu Zhuyu decoction in improving the function of hypertensive vascular endothelial cells,which could provide a scientific basis for the future molecular mechanism of XFZY in treating hypertension. 展开更多
关键词 Xuefu Zhuyu decoction HYPERTENSION vascular endothelial cells pharmacological substances and targets
下载PDF
Correlation between preoperative systemic immune inflammation index, nutritional risk index, and prognosis of radical resection of liver cancer 被引量:3
14
作者 jing li Hai-Yan Shi Min Zhou 《World Journal of Gastrointestinal Surgery》 SCIE 2023年第11期2445-2455,共11页
BACKGROUND Radical surgery is the most commonly used treatment for hepatocellular carcinoma(HCC).However,the surgical effect remains not ideal,and prognostic evaluation is insufficient.Furthermore,clinical interventio... BACKGROUND Radical surgery is the most commonly used treatment for hepatocellular carcinoma(HCC).However,the surgical effect remains not ideal,and prognostic evaluation is insufficient.Furthermore,clinical intervention is rife with uncertainty and not conducive to prolonging patient survival.AIM To explore correlations between the systemic immune inflammatory index(SII)and geriatric nutritional risk index(GNRI)and HCC operation prognosis.METHODS This retrospective study included and collected follow up data from 100 HCC.Kaplan–Meier survival curves were used to analyze the correlation between SII and GNRI scores and survival.SII and GNRI were calculated as follows:SII=neutrophil count×platelet count/lymphocyte count;GNRI=[1.489×albumin(g/L)+41.7×actual weight/ideal weight].We analyzed the predictive efficacy of the SII and GNRI in HCC patients using receiver operating characteristic(ROC)curves,and the relationships between the SII,GNRI,and survival rate using Kaplan–Meier survival curves.Cox regression analysis was utilized to analyze independent risk factors influencing prognosis.RESULTS After 1 year of follow-up,24 patients died and 76 survived.The area under the curve(AUC),sensitivity,specificity,and the optimal cutoff value of SII were 0.728(95%confidence interval:0.600-0.856),79.2%,63.2%,and 309.14,respectively.According to ROC curve analysis results for predicting postoperative death in HCC patients,the AUC of SII and GNRI combination was higher than that of SII or GNRI alone,and SII was higher than that of GNRI(P<0.05).The proportion of advanced differentiated tumors,tumor maximum diameter(5–10 cm,>10 cm),lymph node metastasis,and TNM stage III-IV in patients with SII>309.14 was higher than that in patients with SII≤309.14(P<0.05).The proportion of patients aged>70 years was higher in patients with GNRI≤98 than that in patients with GNRI>98(P<0.05).The 1-year survival rate of the SII>309.14 group(compared with the SII≤309.14 group)and GNRI≤98 group(compared with the GNRI>98 group)was lower(P<0.05).CONCLUSION The prognosis after radical resection of HCC is related to the SII and GNRI and poor in high SII or low GNRI patients. 展开更多
关键词 Systemic immune inflammation index Nutritional risk index Radical resection Liver cancer PROGNOSIS CORRELATION
下载PDF
Towards Practical Application of Li-S Battery with High Sulfur Loading and Lean Electrolyte:Will Carbon-Based Hosts Win This Race? 被引量:1
15
作者 Yi Gong jing li +7 位作者 Kai Yang Shaoyin li Ming Xu Guangpeng Zhang Yan Shi Qiong Cai Huanxin li Yunlong Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期384-422,共39页
As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density com... As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents.However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject. 展开更多
关键词 Li-S batteries Carbon materials Structural design Functional modification Machine learning
下载PDF
Ion–Electron Coupling Enables Ionic Thermoelectric Material with New Operation Mode and High Energy Density 被引量:1
16
作者 Yongjie He Shaowei li +15 位作者 Rui Chen Xu liu George Omololu Odunmbaku Wei Fang Xiaoxue lin Zeping Ou Qianzhi Gou Jiacheng Wang Nabonswende Aida Nadege Ouedraogo jing li Meng li Chen li Yujie Zheng Shanshan Chen Yongli Zhou Kuan Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期193-203,共11页
Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the uti... Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the utilization of i-TE is currently based on capacitive charge/discharge, which results in discontinuous working mode and low energy density. Here,we introduce an ion–electron thermoelectric synergistic(IETS)effect by utilizing an ion–electron conductor. Electrons/holes can drift under the electric field generated by thermodiffusion of ions, thus converting the ionic current into electrical current that can pass through the external circuit. Due to the IETS effect, i-TE is able to operate continuously for over 3000 min.Moreover, our i-TE exhibits a thermopower of 32.7 mV K^(-1) and an energy density of 553.9 J m^(-2), which is more than 6.9 times of the highest reported value. Consequently, direct powering of electronics is achieved with i-TE. This work provides a novel strategy for the design of high-performance i-TE materials. 展开更多
关键词 Ionic thermoelectric Ion–electron coupling Ionic conductivity THERMOPOWER
下载PDF
Enabling high-efficiency ethanol oxidation on NiFe-LDH via deprotonation promotion and absorption inhibition
17
作者 Jiawei Shi Huawei He +6 位作者 Yinghua Guo Feng Ji jing li Yi Zhang Chengwei Deng liyuan Fan Weiwei Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期76-82,I0004,共8页
Nucleophile oxidation reaction(NOR), represented by ethanol oxidation reaction(EOR), is a promising pathway to replace oxygen evolution reaction(OER). EOR can effectively reduce the driving voltage of hydrogen product... Nucleophile oxidation reaction(NOR), represented by ethanol oxidation reaction(EOR), is a promising pathway to replace oxygen evolution reaction(OER). EOR can effectively reduce the driving voltage of hydrogen production in direct water splitting. In this work, large current and high efficiency of EOR on a Ni, Fe layered double hydroxide(NiFe-LDH) catalyst were simultaneously achieved by a facile fluorination strategy. F in NiFe-LDH can reduce the activation energy of the dehydrogenation reaction, thus promoting the deprotonation process of NiFe-LDH to achieve a lower EOR onset potential. It also weakens the absorption of OH-and nucleophile electrooxidation products on the surface of NiFe-LDH at a higher potential, achieving a high current density and EOR selectivity, according to density functional theory calculations. Based on our experiment results, the optimized fluorinated NiFe-LDH catalyst achieves a low potential of 1.386 V to deliver a 10 mA cm^(-2)EOR. Moreover, the Faraday efficiency is greater than 95%, with a current density ranging from 10 to 250 mA cm^(-2). This work provides a promising pathway for an efficient and cost-effective NOR catalyst design for economic hydrogen production. 展开更多
关键词 Ethanol oxidation reaction High efficiency Ni Fe layered double hydroxide Fluorination strategy DEPROTONATION
下载PDF
Characterization and stability of sedimentary colloids in different ecology regions in Taihu Lake
18
作者 Xin HU jing li +5 位作者 Juan WANG li YIN Kaipian SHI Heyong HUANG Yong ZHANG Shiyin li 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第6期2146-2159,共14页
Colloidal particles,heterogeneous mixture with various organic components and continuous molecular weight(MW)distribution,is omnipresent in lake sediments and substantially influence the retention,transportation,and f... Colloidal particles,heterogeneous mixture with various organic components and continuous molecular weight(MW)distribution,is omnipresent in lake sediments and substantially influence the retention,transportation,and fate of contaminants in lake ecosystem.We sampled and extracted sedimentary colloids from different ecology regions in Taihu Lake,Jiangsu,East China,in June 2020,and they were further separated into four different particle size ranges by tangent ultrafiltration,and the properties of colloids were studied in various methods,including zeta potential analysis,transmission electron micrograph images(TEM),Fourier transformation infrared(FTIR),and 3D fluorescence.Results show that the surface of the colloids is covered with organic macromolecular substances,such as humuslike substances and protein-like substances.There were significant differences in molecular weight and fraction content of colloids in the sediments from macrophyte-dominant(MD)area and algae-dominant(AD)area in the lake.Colloids from MD area are mainly composed of humic acid,protein,and fulvic acid;the content of fulvic acid is lower than that of humic acid and protein.The humic acid exists mainly in small molecular weight(10-100 kDa),protein exists in mainly large molecular weight colloids(0.45-1μm).Colloids from AD area are mainly composed of humic acid,and mainly distributed in the molecular weight(10 kDa-0.45μm).The presence of humic acid inhibits effectively the agglomeration of the colloids.Especially,the stability of colloids is closely related to the molecular weight,with low molecular weight from MD area show higher stability.The existence of humic acid in colloids increases the electrostatic repulsion between colloidal particles,which can effectively inhibit the agglomeration of colloids,thus enhancing the stability of colloids.Furthermore,both monovalent and divalent electrolytes enhance colloidal aggregation,and the low-molecular-weight(LMW)colloid fraction exhibits higher stability efficiency than the high-molecular-weight(HMW)colloidal. 展开更多
关键词 sediment colloid molecular weight electrolyte ion CHARACTERIZATION aggregation behavior
下载PDF
Room-temperature degradation of o-xylene in simulated air using an online-regenerable plasma-catalysis reactor with low amounts of nanosized noble metals on Co_(3)O_(4)
19
作者 狄书成 徐家成 +8 位作者 姚水良 李晶 吴祖良 高尔豪 朱佳丽 戴连欣 刘卫华 张补河 张峻维 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第10期26-36,共11页
The plasma catalytic degradation of o-xylene in simulated air was improved by loading low amounts of Pt,Pd,or Au onto Co_(3)O_(4).At room temperature,o-xylene conversion and CO_(x)selectivity using a0.1 wt%Pt/Co_(3)O_... The plasma catalytic degradation of o-xylene in simulated air was improved by loading low amounts of Pt,Pd,or Au onto Co_(3)O_(4).At room temperature,o-xylene conversion and CO_(x)selectivity using a0.1 wt%Pt/Co_(3)O_(4)catalyst reached 98.9%and 80%,and the energy efficiency was at the top level in comparison with values in the literature.A stable o-xylene degradation performance could be obtained by online regenerating the heat-insulated reactor with a high energy density.After characterization,it was found that the loading of nanosized Pt not only increased the Co^(3+)/Co^(2+)ratio,where the Co^(3+)benefitted the formation of reactive oxygen species,but also conduced Pt^(0)to oxygen activation,resulting in effective promotion of complete o-xylene oxidation.Operando plasma diffuse reflectance infrared Fourier transform spectroscopy demonstrated the complete o-xylene oxidation and proved that Pt played a key role in the complete oxidation of o-xylene. 展开更多
关键词 nanosized Pt Co_(3)O_(4) 0-xylene degradation operando plasma DRIFTS Co^(3+)/Co^(2+)ratio
下载PDF
Stable NiPt-Mo_(2)C active site pairs enable boosted water splitting and direct methanol fuel cell
20
作者 jing li Zhu Guo +3 位作者 Wenjie Zhang jing Guo Konggang Qu Weiwei Cai 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期559-566,共8页
Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water elect... Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water electrolysis technologies.Since both of MOR and alkaline HER are related to water dissociation reaction(WDR),it is reasonable to invite secondary active sites toward WDR to pair with Pt for boosted MOR and alkaline HER activity on Pt.Mo_(2)C and Ni species are therefore employed to engineer NiPt-Mo_(2)C active site pairs,which can be encapsulated in carbon cages,via an in-situ self-confinement strategy.Mass activity of Pt in NiPt-Mo_(2)C@C toward HER is boosted to11.3 A mg_(pt)^(-1),33 times higher than that of Pt/C.Similarly,MOR catalytic activity of Pt in NiPt-Mo_(2)C@C is also improved by 10.5 times and the DMFC maximum power density is hence improved by 9-fold.By considering the great stability,NiPt-Mo_(2)C@C exhibits great practical application potential in DMFCs and water electrolysers. 展开更多
关键词 Hydrogen evolution reaction Methanol oxidation reaction Direct methanol fuel cell Active site pair Self-confinement
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部