Territory awareness refers to the notion that an organism lives in a territory, considers this territory its own, and prevents entry of other organisms. Generally, an organism maximizes its territory for best survival...Territory awareness refers to the notion that an organism lives in a territory, considers this territory its own, and prevents entry of other organisms. Generally, an organism maximizes its territory for best survival advantages, which subsequently allows for species continuation.展开更多
Our previous study showed that systemic administration of the traditional Chinese medicine Epimedium extract promotes peripheral nerve regeneration. Here, we sought to explore the ther- apeutic effects of local admini...Our previous study showed that systemic administration of the traditional Chinese medicine Epimedium extract promotes peripheral nerve regeneration. Here, we sought to explore the ther- apeutic effects of local administration of icariin, a major component of Epimedium extract, on peripheral nerve regeneration. A poly(lactic-co-glycolic acid) biological conduit sleeve was used to bridge a 5 mm right sciatic nerve defect in rats, and physiological saline, nerve growth factor, icariin suspension, or nerve growth factor-releasing microsphere suspension was injected into the defect. Twelve weeks later, sciatic nerve conduction velocity and the number of myelinated fibers were notably greater in the rats treated with icariin suspension or nerve growth factor-releasing microspheres than those that had received nerve growth factor or physiological saline. The effects of icariin suspension were similar to those of nerve growth factor-releasing microspheres. These data suggest that icariin acts as a nerve growth factor-releasing agent, and indicate that local ap- plication of icariin after spinal injury can promote peripheral nerve regeneration.展开更多
Peripheral nerve injury is a serious disease and its repair is challenging. A cable-style autologous graft is the gold standard for repairing long peripheral nerve defects; however, ensuring that the minimum number of...Peripheral nerve injury is a serious disease and its repair is challenging. A cable-style autologous graft is the gold standard for repairing long peripheral nerve defects; however, ensuring that the minimum number of transplanted nerve attains maximum therapeutic effect remains poorly understood. In this study, a rat model of common peroneal nerve defect was established by resecting a 10-mm long right common peroneal nerve. Rats receiving transplantation of the common peroneal nerve in situ were designated as the in situ graft group. Ipsilateral sural nerves(10–30 mm long) were resected to establish the one sural nerve graft group, two sural nerves cable-style nerve graft group and three sural nerves cable-style nerve graft group. Each bundle of the peroneal nerve was 10 mm long. To reduce the barrier effect due to invasion by surrounding tissue and connective-tissue overgrowth between neural stumps, small gap sleeve suture was used in both proximal and distal terminals to allow repair of the injured common peroneal nerve. At three months postoperatively, recovery of nerve function and morphology was observed using osmium tetroxide staining and functional detection. The results showed that the number of regenerated nerve fibers, common peroneal nerve function index, motor nerve conduction velocity, recovery of myodynamia, and wet weight ratios of tibialis anterior muscle were not significantly different among the one sural nerve graft group, two sural nerves cable-style nerve graft group, and three sural nerves cable-style nerve graft group. These data suggest that the repair effect achieved using one sural nerve graft with a lower number of nerve fibers is the same as that achieved using the two sural nerves cable-style nerve graft and three sural nerves cable-style nerve graft. This indicates that according to the ‘multiple amplification' phenomenon, one small nerve graft can provide a good therapeutic effect for a large peripheral nerve defect.展开更多
Previous animal studies of cauda equina injury have primarily used rat models, which display significant differences from humans. Furthermore, most studies have focused on electrophysio- logical examination. To better...Previous animal studies of cauda equina injury have primarily used rat models, which display significant differences from humans. Furthermore, most studies have focused on electrophysio- logical examination. To better mimic the outcome after surgical repair of cauda equina injury, a novel animal model was established in the goat. Electrophysiological, histological and magnetic resonance imaging methods were used to evaluate the morphological and functional outcome after cauda equina injury and end-to-end suture. Our results demonstrate successful establish- ment of the goat experimental model of cauda equina injury. This novel model can provide detailed information on the nerve regenerative process following surgical repair of cauda equina injury.展开更多
基金supported by grants from the National Program on Key Basic Rtesearch Project of China(973 Program),No.2014CB542200the National Natural Science Foundation of China,No.31471144,31571002,31271284,31171150,81171146,30971526a grant from Program for Innovative Research Team in University of Ministry of Education of China,No.IRT1201
文摘Territory awareness refers to the notion that an organism lives in a territory, considers this territory its own, and prevents entry of other organisms. Generally, an organism maximizes its territory for best survival advantages, which subsequently allows for species continuation.
基金supported by grants from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542200the National Natural Science Foundation of China,No.31271284,81171146,31100860+1 种基金the Natural Science Foundation of Beijing of China,No.7142164Program for Innovative Research Team in University of Ministry of Education of China,No.IRT1201
文摘Our previous study showed that systemic administration of the traditional Chinese medicine Epimedium extract promotes peripheral nerve regeneration. Here, we sought to explore the ther- apeutic effects of local administration of icariin, a major component of Epimedium extract, on peripheral nerve regeneration. A poly(lactic-co-glycolic acid) biological conduit sleeve was used to bridge a 5 mm right sciatic nerve defect in rats, and physiological saline, nerve growth factor, icariin suspension, or nerve growth factor-releasing microsphere suspension was injected into the defect. Twelve weeks later, sciatic nerve conduction velocity and the number of myelinated fibers were notably greater in the rats treated with icariin suspension or nerve growth factor-releasing microspheres than those that had received nerve growth factor or physiological saline. The effects of icariin suspension were similar to those of nerve growth factor-releasing microspheres. These data suggest that icariin acts as a nerve growth factor-releasing agent, and indicate that local ap- plication of icariin after spinal injury can promote peripheral nerve regeneration.
基金supported by the National Basic Research Program of China(973 Program),No.2014CB542200a grant from the Ministry of Education Innovation Team,No.IRT1201+2 种基金the National Natural Science Foundation of China,No.31271284,31171150,81171146,30971526,31100860,31040043,31640045,31671246a grant from the Educational Ministry New Century Excellent Talents Support Project in China,No.BMU20110270a grant from the National Key Research and Development Program in China,No.2016YFC1101604
文摘Peripheral nerve injury is a serious disease and its repair is challenging. A cable-style autologous graft is the gold standard for repairing long peripheral nerve defects; however, ensuring that the minimum number of transplanted nerve attains maximum therapeutic effect remains poorly understood. In this study, a rat model of common peroneal nerve defect was established by resecting a 10-mm long right common peroneal nerve. Rats receiving transplantation of the common peroneal nerve in situ were designated as the in situ graft group. Ipsilateral sural nerves(10–30 mm long) were resected to establish the one sural nerve graft group, two sural nerves cable-style nerve graft group and three sural nerves cable-style nerve graft group. Each bundle of the peroneal nerve was 10 mm long. To reduce the barrier effect due to invasion by surrounding tissue and connective-tissue overgrowth between neural stumps, small gap sleeve suture was used in both proximal and distal terminals to allow repair of the injured common peroneal nerve. At three months postoperatively, recovery of nerve function and morphology was observed using osmium tetroxide staining and functional detection. The results showed that the number of regenerated nerve fibers, common peroneal nerve function index, motor nerve conduction velocity, recovery of myodynamia, and wet weight ratios of tibialis anterior muscle were not significantly different among the one sural nerve graft group, two sural nerves cable-style nerve graft group, and three sural nerves cable-style nerve graft group. These data suggest that the repair effect achieved using one sural nerve graft with a lower number of nerve fibers is the same as that achieved using the two sural nerves cable-style nerve graft and three sural nerves cable-style nerve graft. This indicates that according to the ‘multiple amplification' phenomenon, one small nerve graft can provide a good therapeutic effect for a large peripheral nerve defect.
基金supported by grants from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542200Program for Innovative Research Team in University of Ministry of Education of China,No.IRT1201+2 种基金the National Natural Science Foundation of China,No.31271284,31171150,81171146,30971526,31040043,31371210,81372044,31471144Program for New Century Excellent Talents in University of Ministry of Education of China,No.BMU20110270the Natural Science Foundation of Beijing of China,No.7142164
文摘Previous animal studies of cauda equina injury have primarily used rat models, which display significant differences from humans. Furthermore, most studies have focused on electrophysio- logical examination. To better mimic the outcome after surgical repair of cauda equina injury, a novel animal model was established in the goat. Electrophysiological, histological and magnetic resonance imaging methods were used to evaluate the morphological and functional outcome after cauda equina injury and end-to-end suture. Our results demonstrate successful establish- ment of the goat experimental model of cauda equina injury. This novel model can provide detailed information on the nerve regenerative process following surgical repair of cauda equina injury.