Birds exhibit extraordinary mobility and remarkable navigational skills,obtaining guidance cues from the Earth’s magnetic field for orientation and long-distance movement.Bird species also show tremendous diversity i...Birds exhibit extraordinary mobility and remarkable navigational skills,obtaining guidance cues from the Earth’s magnetic field for orientation and long-distance movement.Bird species also show tremendous diversity in navigation strategies,with considerable differences even within the same taxa and among individuals from the same population.The highly conserved iron and iron-sulfur cluster binding magnetoreceptor(MagR)protein is suggested to enable animals,including birds,to detect the geomagnetic field and navigate accordingly.Notably,MagR is also implicated in other functions,such as electron transfer and biogenesis of iron-sulfur clusters,raising the question of whether variability exists in its biochemical and biophysical features among species,particularly birds.In the current study,we conducted a comparative analysis of MagR from two different bird species,including the migratory European robin(Erithacus rubecula)and the homing pigeon(Columba livia).Sequence alignment revealed an extremely high degree of similarity between the MagRs of these species,with only three sequence variations.Nevertheless,two of these variations underpinned significant differences in metal binding capacity,oligomeric state,and magnetic properties.These findings offer compelling evidence for the marked differences in MagR between the two avian species,potentially explaining how a highly conserved protein can mediate such diverse functions.展开更多
The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,batter...The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization.展开更多
Based on high-tide shoreline data extracted from 87 Landsat satellite images from 1986 to 2019 as well as using the linear regression rate and performing a Mann-Kendall(M–K)trend test,this study analyzes the linear c...Based on high-tide shoreline data extracted from 87 Landsat satellite images from 1986 to 2019 as well as using the linear regression rate and performing a Mann-Kendall(M–K)trend test,this study analyzes the linear characteristics and nonlinear behavior of the medium-to long-term shoreline evolution of Jinghai Bay,eastern Guangdong Province.In particular,shoreline rotation caused by a shore-normal coastal structure is emphasized.The results show that the overall shoreline evolution over the past 30 years is characterized by erosion on the southwest beach,with an average erosion rate of 3.1 m/a,and significant accretion on the northeast beach,with an average accretion rate of 5.6 m/a.Results of the M–K trend test indicate that significant shoreline changes occurred in early 2006,which can be attributed to shore-normal engineering.Prior to that engineering construction,the shorelines are slightly eroded,where the average erosion rate is 0.7 m/a.However,after shore-normal engineering is performed,the shoreline is characterized by significant erosion(3.2 m/a)on the southwest beach and significant accretion(8.5 m/a)on the northeast beach,thus indicating that the shore-normal engineering at the updrift headland contributes to clockwise shoreline rotation.Further analysis shows that the clockwise shoreline rotation is promoted not only by longshore sediment transport processes from southwest to northeast,but also by cross-shore sediment transport processes.These findings are crucial for beach erosion risk management,coastal disaster zoning,regional sediment budget assessments,and further observations and predictions of beach morphodynamics.展开更多
Objective:To explore the correlation between genotypes of Orientia(O.)tsutsugamushi and clinical characteristics of scrub typhus patients.Methods:Clinical data of patients with scrub typhus admitted to different types...Objective:To explore the correlation between genotypes of Orientia(O.)tsutsugamushi and clinical characteristics of scrub typhus patients.Methods:Clinical data of patients with scrub typhus admitted to different types of medical institutions in Guangzhou from September 2012 to December 2016 were collected using medical records.Demographic data,clinical manifestations,as well as hematological and biochemical indicators of patients infected with different genotypes were analyzed and compared.Results:A total of 192 patients were included in this study,including 121 patients with Karp genotype of O.tsutsugamushi infection(63.0%),36 patients with Gilliam genotype(19.0%),23 patients with Kato genotype(12.0%),and 12 patients with TA763 genotype(6.0%)infection.The median value of albumin in patients with Karp genotype infection was significantly lower than that of Gilliam-infected patients(P=0.032).Patients with Karp genotype infection had a significantly longer hospital stay(9 days)than those with Gilliam genotype(7 days)(P=0.009)and Kato genotype infection(6 days)(P=0.005).Karp-infected patients also represented for the largest number of patients with complicated organ involvement(88/133,66.2%).Furthermore,Karp-infected patients had higher risk of developing multiple organ dysfunction syndrome(18.2%)and requiring intensive care unit treatment(15.9%).Besides,patients with Gilliam genotype(8 days)and TA763 genotype infection(7.5 days)had shorter fever duration than those with Karp genotype(9 days)and Kato genotype(9 days)infection,respectively.Conclusions:Genotypes of Orientia tsutsugamushi were associated with varying clinical manifestations,organ involvement,and treatment outcomes,suggesting that genotypes ranged in virulence.展开更多
Developing high efficient Pd-based electrocatalysts for oxygen reduction reaction(ORR) is still challenging for alkaline membrane fuel cell,since the strong oxygen adsorption energy and easy agglomerative intrinsic pr...Developing high efficient Pd-based electrocatalysts for oxygen reduction reaction(ORR) is still challenging for alkaline membrane fuel cell,since the strong oxygen adsorption energy and easy agglomerative intrinsic properties. In order to simultaneously solve these problems, Pd/Co_(3)O_(4)–N–C multidimensional materials with porous structures is designed as the ORR catalysts. In details, the ZIF-67 with polyhedral structure was firstly synthesized and then annealed at high-temperature to prepare the N-doped Co_(3)O_(4)carbon-based material, which was used to homogeneously confine Pd nanoparticles and obtained the Pd/Co_(3)O_(4)–N–C series catalysts. The formation of Co–N and C–N bond could provide efficient active sites for ORR. Simultaneously, the strong electronic interaction in the interface between the Pd and N-doped Co_(3)O_(4)could disperse and avoid the agglomeration of Pd nanoparticles and ensure the exposure of active sites, which is crucial to lower the energy barrier toward ORR and substantially enhance the ORR kinetics. Hence, the Pd/Co_(3)O_(4)–N–C nanocompounds exhibited excellent ORR catalytic performance, ideal Pd mass activity, and durability in 0.1 mol L-1KOH solution compared with Co_(3)O_(4)–N–C and Pd/C. The scalable synthesis method, relatively low cost, and excellent electrochemical ORR performance indicated that the obtained Pd/Co_(3)O_(4)–N–C electrocatalyst had the potential for application on fuel cells.展开更多
Objective Resuscitation with whole blood is known to be better than that with saline in attaining the return of spontaneous circulation(ROSC)and improving the short-term survival rate for hemorrhage-induced traumatic ...Objective Resuscitation with whole blood is known to be better than that with saline in attaining the return of spontaneous circulation(ROSC)and improving the short-term survival rate for hemorrhage-induced traumatic cardiac arrest(HiTCA).However,the resuscitation with whole blood alone fails to address the pathophysiological abnormalities,including hyperglycemia,hyperkalemia and coagulopathy,after HiTCA.The present study aimed to determine whether the modified glucose-insulin-potassium(GIK)therapy can ameliorate the above-mentioned pathophysiological abnormalities,enhance the ROSC,improve the function of key organs,and reduce the mortality after HiTCA.Methods HiTCA was induced in rabbits(n=36)by controlled hemorrhage.Following arrest,the rabbits were randomly divided into three groups(n=12 each):group A(no resuscitation),group B(resuscitation with whole blood),and group C(resuscitation with whole blood plus GIK).The GIK therapy was administered based on the actual concentration of glucose and potassium.The ROSC rate and survival rate were obtained.Hemodynamical and biochemical changes were detected.Thromboelastography(TEG)was used to measure coagulation parameters,and enzyme-linked immunosorbent assay to detect parameters related to inflammation,coagulation and the function of brain.Results All animals in groups B and C attained ROSC.Two rabbits died 24–48 h after HiTCA in group B,while no rabbits died in group C.The GIK therapy significantly reduced the levels of blood glucose,potassium,and biological markers for inflammatory reaction,and improved the heart,kidney,liver and brain function in group C when compared to group B.Furthermore,the R values of TEG were significantly lower in group C than in group B,and the maximum amplitude of TEG was slightly lower in group B than in group C,with no significant difference found.Conclusion Resuscitation with whole blood and modified GIK therapy combined can ameliorate the pathophysiological disorders,including hyperglycemia,hyperkalemia and coagulopathy,and may improve the function of key organs after HiTCA.展开更多
The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth invest...The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth investigation of repetitive motifs in various ice-binding proteins(IBPs)with evolution analysis.In this way,several peptides with notable antifreeze activity were developed.In particular,a designed antifreeze peptide named AVD exhibits ideal ice recrystallization inhibition(IRI),solubility,and biocompatibility,making it suitable for use as a cryoprotective agent(CPA).A mutation analysis and molecular dynamics(MD)simulations indicated that the Thr6 and Asn8 residues of the AVD peptide are fundamental to its ice-binding capacity,while the Ser18 residue can synergistically enhance their interaction with ice,revealing the antifreeze mechanism of AVD.Furthermore,to evaluate the cryoprotection potential of AVD,the peptide was successfully employed for the cryopreservation of various cells,which demonstrated significant post-freezing cell recovery.This work opens up a new avenue for designing antifreeze materials and provides peptide-based functional modules for synthetic biology.展开更多
Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead...Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations.展开更多
Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o...Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.展开更多
Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to...Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to investigate the imaging features of intrahepatic portal vein in adult patients with CTPV and establish the relationship between the manifestations of intrahepatic portal vein and the progression of CTPV. Methods: We retrospectively analyzed 14 CTPV patients in Beijing Tsinghua Changgung Hospital. All patients underwent both direct portal venography(DPV) and computed tomography angiography(CTA) to reveal the manifestations of the portal venous system. The vessels measured included the left portal vein(LPV), right portal vein(RPV), main portal vein(MPV) and the portal vein bifurcation(PVB). Results: Nine males and 5 females, with a median age of 40.5 years, were included in the study. No significant difference was found in the diameters of the LPV or RPV measured by DPV and CTA. The visualization in terms of LPV, RPV and PVB measured by DPV was higher than that by CTA. There was a significant association between LPV/RPV and PVB/MPV in term of visibility revealed with DPV( P = 0.01), while this association was not observed with CTA. According to the imaging features of the portal vein measured by DPV, CTPV was classified into three categories to facilitate the diagnosis and treatment. Conclusions: DPV was more accurate than CTA for revealing the course of the intrahepatic portal vein in patients with CTPV. The classification of CTPV, that originated from the imaging features of the portal vein revealed by DPV, may provide a new perspective for the diagnosis and treatment of CTPV.展开更多
Background Wooden breast(WB)myopathy is a common myopathy found in commercial broiler chickens worldwide.Histological examination has revealed that WB myopathy is accompanied by damage to the pectoralis major(PM)muscl...Background Wooden breast(WB)myopathy is a common myopathy found in commercial broiler chickens worldwide.Histological examination has revealed that WB myopathy is accompanied by damage to the pectoralis major(PM)muscle.However,the underlying mechanisms responsible for the formation of WB in broilers have not been fully elucidated.This study aimed to investigate the potential role of hypoxia-mediated programmed cell death(PCD)in the formation of WB myopathy.Results Histological examination and biochemical analysis were performed on the PM muscle of the control(CON)and WB groups.A significantly increased thickness of the breast muscle in the top,middle,and bottom portions(P<0.01)was found along with pathological structure damage of myofibers in the WB group.The number of capillaries per fiber in PM muscle,and the levels of p O_(2) and s O_(2) in the blood,were significantly decreased(P<0.01),while the levels of p CO_(2) and TCO_(2) in the blood were significantly increased(P<0.05),suggesting hypoxic conditions in the PM muscle of the WB group.We further evaluated the PCD-related pathways including autophagy,apoptosis,and necroptosis to understand the consequence response to enhanced hypoxic conditions in the PM muscle of birds with WB.The ratio of LC3 II to LC3 I,and the autophagy-related factors HIF-1α,BNIP3,Beclin1,AMPKα,and ULK1 at the m RNA and protein levels,were all significantly upregulated(P<0.05),showing that autophagy occurred in the PM muscle of the WB group.The apoptotic index,as well as the expressions of Bax,Cytc,caspase 9,and caspase 3,were significantly increased(P<0.05),whereas Bcl-2 was significantly decreased(P<0.05)in the WB-affected PM muscle,indicating the occurrence of apoptosis mediated by the mitochondrial pathway.Additionally,the expressions of necroptosis-related factors RIP1,RIP3,and MLKL,as well as NF-κB and the pro-inflammatory cytokines TNF-α,IL-1β,and IL-6,were all significantly enhanced(P<0.05)in the WB-affected PM muscle.Conclusions The WB myopathy reduces blood supply and induces hypoxia in the PM muscle,which is closely related to the occurrence of PCD including apoptosis,autophagy,and necroptosis within myofibers,and finally leads to abnormal muscle damage and the development of WB in broilers.展开更多
Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a rea...Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.展开更多
The model diatom Phaeodactylum tricornutum is considered a promising source of various high value bioproducts,and developing cultivation processes is crucial for its commercialization.Although mixotrophy and heterotro...The model diatom Phaeodactylum tricornutum is considered a promising source of various high value bioproducts,and developing cultivation processes is crucial for its commercialization.Although mixotrophy and heterotrophy have been recommended as effective strategies for microalgal cultivation,previous studies on P.tricornutum have yielded conflicting results in terms of cultivating this microalga.To verify the capacity of this microalga utilizing external organic carbon,both heterotrophic and mixotrophic cultivation with varied carbon sources were performed using an axenic strain.The results demonstrate that glycerol was the only organic carbon that substantially stimulated the growth of P.tricornutum in the presence of light.Sodium acetate(NaAc)at low concentrations could also promote growth,while at high concentrations led to severe inhibition under mixotrophic conditions.The addition of glucose imposed no appreciable impact on either cell density or biomass concentration,confirming that P.tricornutum cannot metabolize external glucose.Subsequently,a comparative analysis between mixotrophy and autotrophy was performed to reveal the influences of glycerol on the cellular metabolism based on growth performances,biochemical compositions,and chlorophyll fluorescence parameters.Results also indicate that the addition of glycerol did not have detrimental effects on the capacity of either pigments biosynthesis or photosynthesis,but enhanced the saturated fatty acids and reduced the unsaturated fatty acids.展开更多
The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys.In this study,FGH96 alloy powders with various oxygen contents were investigated using high-reso...The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys.In this study,FGH96 alloy powders with various oxygen contents were investigated using high-resolution transmission electron microscopy and atomic probe technology to elucidate the structure evolution of the oxide film.Energy dispersive spectrometer analysis revealed the presence of two distinct components in the oxide film of the alloy powders:amorphous oxide layer covering the γ matrix and amorphous oxide particles above the carbide.The alloying elements within the oxide layer showed a laminated distribution,with Ni,Co,Cr,and Al/Ti,which was attributed to the decreasing oxygen equilibrium pressure as oxygen diffused from the surface into the γ matrix.On the other hand,Ti enrichment was observed in the oxide particles caused by the oxidation and decomposition of the carbide phase.Comparative analysis of the oxide film with oxygen contents of 140,280,and 340 ppm showed similar element distributions,while the thickness of the oxide film varies approximately at 9,14,and 30 nm,respectively.These findings provide valuable insights into the structural analysis of the oxide film on FGH96 alloy powders.展开更多
Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conv...Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems.展开更多
In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic ...In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic electrode exhibits no template requirement,freedom design,low-cost,robust,anticorrosion,lightweight,and micro-nano porous characteristics.It can be drawn to the conclusion that highly oriented open-porous 3D geometry structure will be beneficial for improving surface catalytic active area,wetting performance,and reaction–diffusion dynamics of plastic electrodes for oxygen evolution reaction(OER)catalysis process.Density functional theory(DFT)calculation interprets the origin of high activity of NiFe(PO_(3))O(OH)and demonstrates that the implantation of the–PO_(3)can effectively bind the 3d orbital of Ni in NiFe(PO_(3))O(OH),lead to the weak adsorption of intermediate,make electron more active to improve the conductivity,thereby lowing the transform free energy of*O to*OOH.The water oxidization performance of as-prepared 3D NiFe(PO_(3))O(OH)hollow tubular(HT)lattice plastic electrode has almost reached the state-of-the-art level compared with the as-reported large-current-density catalysts or 3D additive manufactured plastic/metal-based electrodes,especially for high current OER electrodes.This work breaks through the bottleneck that plagues the performance improvement of low-cost high-current electrodes.展开更多
基金supported by the National Natural Science Foundation of China(31640001 and T2350005 to C.X.,U21A20148 to X.Z.and C.X.)Ministry of Science and Technology of China(2021ZD0140300 to C.X.)Presidential Foundation of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Y96XC11131,E26CCG27,and E26CCD15 to C.X.,E36CWGBR24B and E36CZG14132 to T.C.)。
文摘Birds exhibit extraordinary mobility and remarkable navigational skills,obtaining guidance cues from the Earth’s magnetic field for orientation and long-distance movement.Bird species also show tremendous diversity in navigation strategies,with considerable differences even within the same taxa and among individuals from the same population.The highly conserved iron and iron-sulfur cluster binding magnetoreceptor(MagR)protein is suggested to enable animals,including birds,to detect the geomagnetic field and navigate accordingly.Notably,MagR is also implicated in other functions,such as electron transfer and biogenesis of iron-sulfur clusters,raising the question of whether variability exists in its biochemical and biophysical features among species,particularly birds.In the current study,we conducted a comparative analysis of MagR from two different bird species,including the migratory European robin(Erithacus rubecula)and the homing pigeon(Columba livia).Sequence alignment revealed an extremely high degree of similarity between the MagRs of these species,with only three sequence variations.Nevertheless,two of these variations underpinned significant differences in metal binding capacity,oligomeric state,and magnetic properties.These findings offer compelling evidence for the marked differences in MagR between the two avian species,potentially explaining how a highly conserved protein can mediate such diverse functions.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52274295)the Natural Science Foundation of Hebei Province(E2020501001,E2021501029,A2021501007,E2022501028,E2022501029)+5 种基金the Natural Science Foundation-Steel,the Iron Foundation of Hebei Province(No.E2022501030)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(22567627H)the Science and Technology Project of Hebei Education Department(ZD2022158)the Central Guided Local Science and Technology Development Fund Project of Hebei province(226Z4401G)the China Scholarship Council(No.202206080061,202206050119)the 2023 Hebei Provincial Postgraduate Student Innovation Ability training funding project(CXZZSS2023195)。
文摘The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization.
基金The National Nature Science Foundation of China under contract No.42071007the Nature Science Foundation of Hainan Province under contract Nos 422RC665,421QN0883,and 423RC553。
文摘Based on high-tide shoreline data extracted from 87 Landsat satellite images from 1986 to 2019 as well as using the linear regression rate and performing a Mann-Kendall(M–K)trend test,this study analyzes the linear characteristics and nonlinear behavior of the medium-to long-term shoreline evolution of Jinghai Bay,eastern Guangdong Province.In particular,shoreline rotation caused by a shore-normal coastal structure is emphasized.The results show that the overall shoreline evolution over the past 30 years is characterized by erosion on the southwest beach,with an average erosion rate of 3.1 m/a,and significant accretion on the northeast beach,with an average accretion rate of 5.6 m/a.Results of the M–K trend test indicate that significant shoreline changes occurred in early 2006,which can be attributed to shore-normal engineering.Prior to that engineering construction,the shorelines are slightly eroded,where the average erosion rate is 0.7 m/a.However,after shore-normal engineering is performed,the shoreline is characterized by significant erosion(3.2 m/a)on the southwest beach and significant accretion(8.5 m/a)on the northeast beach,thus indicating that the shore-normal engineering at the updrift headland contributes to clockwise shoreline rotation.Further analysis shows that the clockwise shoreline rotation is promoted not only by longshore sediment transport processes from southwest to northeast,but also by cross-shore sediment transport processes.These findings are crucial for beach erosion risk management,coastal disaster zoning,regional sediment budget assessments,and further observations and predictions of beach morphodynamics.
基金supported by the Science and Technology Plan Grant of Guangzhou(grant number 202102080035)the Guangzhou Health and Family Planning Science and Technology Project Western Medicine-general Guidance Project(20221A011067)+2 种基金the Basic Research Project of Key Laboratory of Guangzhou(grant number 202102100001)the Key Project of Medicine Discipline of Guangzhou(grant number 2021-2023-12)the Guangzhou Health Science and Technology Project(grant number 20221A011066).
文摘Objective:To explore the correlation between genotypes of Orientia(O.)tsutsugamushi and clinical characteristics of scrub typhus patients.Methods:Clinical data of patients with scrub typhus admitted to different types of medical institutions in Guangzhou from September 2012 to December 2016 were collected using medical records.Demographic data,clinical manifestations,as well as hematological and biochemical indicators of patients infected with different genotypes were analyzed and compared.Results:A total of 192 patients were included in this study,including 121 patients with Karp genotype of O.tsutsugamushi infection(63.0%),36 patients with Gilliam genotype(19.0%),23 patients with Kato genotype(12.0%),and 12 patients with TA763 genotype(6.0%)infection.The median value of albumin in patients with Karp genotype infection was significantly lower than that of Gilliam-infected patients(P=0.032).Patients with Karp genotype infection had a significantly longer hospital stay(9 days)than those with Gilliam genotype(7 days)(P=0.009)and Kato genotype infection(6 days)(P=0.005).Karp-infected patients also represented for the largest number of patients with complicated organ involvement(88/133,66.2%).Furthermore,Karp-infected patients had higher risk of developing multiple organ dysfunction syndrome(18.2%)and requiring intensive care unit treatment(15.9%).Besides,patients with Gilliam genotype(8 days)and TA763 genotype infection(7.5 days)had shorter fever duration than those with Karp genotype(9 days)and Kato genotype(9 days)infection,respectively.Conclusions:Genotypes of Orientia tsutsugamushi were associated with varying clinical manifestations,organ involvement,and treatment outcomes,suggesting that genotypes ranged in virulence.
基金funded by National Natural Science Foundation of China (21975129)Natural Science Foundation of Jiangsu Province (BK20190759)+1 种基金Nanjing Forestry UniversityPostgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX21_0337)。
文摘Developing high efficient Pd-based electrocatalysts for oxygen reduction reaction(ORR) is still challenging for alkaline membrane fuel cell,since the strong oxygen adsorption energy and easy agglomerative intrinsic properties. In order to simultaneously solve these problems, Pd/Co_(3)O_(4)–N–C multidimensional materials with porous structures is designed as the ORR catalysts. In details, the ZIF-67 with polyhedral structure was firstly synthesized and then annealed at high-temperature to prepare the N-doped Co_(3)O_(4)carbon-based material, which was used to homogeneously confine Pd nanoparticles and obtained the Pd/Co_(3)O_(4)–N–C series catalysts. The formation of Co–N and C–N bond could provide efficient active sites for ORR. Simultaneously, the strong electronic interaction in the interface between the Pd and N-doped Co_(3)O_(4)could disperse and avoid the agglomeration of Pd nanoparticles and ensure the exposure of active sites, which is crucial to lower the energy barrier toward ORR and substantially enhance the ORR kinetics. Hence, the Pd/Co_(3)O_(4)–N–C nanocompounds exhibited excellent ORR catalytic performance, ideal Pd mass activity, and durability in 0.1 mol L-1KOH solution compared with Co_(3)O_(4)–N–C and Pd/C. The scalable synthesis method, relatively low cost, and excellent electrochemical ORR performance indicated that the obtained Pd/Co_(3)O_(4)–N–C electrocatalyst had the potential for application on fuel cells.
基金the Key Clinical Innovation Project of Army Medical University and Xinqiao Hospital(CX2019JS107/2018JSLC0023).
文摘Objective Resuscitation with whole blood is known to be better than that with saline in attaining the return of spontaneous circulation(ROSC)and improving the short-term survival rate for hemorrhage-induced traumatic cardiac arrest(HiTCA).However,the resuscitation with whole blood alone fails to address the pathophysiological abnormalities,including hyperglycemia,hyperkalemia and coagulopathy,after HiTCA.The present study aimed to determine whether the modified glucose-insulin-potassium(GIK)therapy can ameliorate the above-mentioned pathophysiological abnormalities,enhance the ROSC,improve the function of key organs,and reduce the mortality after HiTCA.Methods HiTCA was induced in rabbits(n=36)by controlled hemorrhage.Following arrest,the rabbits were randomly divided into three groups(n=12 each):group A(no resuscitation),group B(resuscitation with whole blood),and group C(resuscitation with whole blood plus GIK).The GIK therapy was administered based on the actual concentration of glucose and potassium.The ROSC rate and survival rate were obtained.Hemodynamical and biochemical changes were detected.Thromboelastography(TEG)was used to measure coagulation parameters,and enzyme-linked immunosorbent assay to detect parameters related to inflammation,coagulation and the function of brain.Results All animals in groups B and C attained ROSC.Two rabbits died 24–48 h after HiTCA in group B,while no rabbits died in group C.The GIK therapy significantly reduced the levels of blood glucose,potassium,and biological markers for inflammatory reaction,and improved the heart,kidney,liver and brain function in group C when compared to group B.Furthermore,the R values of TEG were significantly lower in group C than in group B,and the maximum amplitude of TEG was slightly lower in group B than in group C,with no significant difference found.Conclusion Resuscitation with whole blood and modified GIK therapy combined can ameliorate the pathophysiological disorders,including hyperglycemia,hyperkalemia and coagulopathy,and may improve the function of key organs after HiTCA.
基金supported by the National Key Research and Development Program of China (2021YFC2100800)the National Natural Science Foundation of China (22078238,21961132005,and 21908160)+1 种基金the Open Funding Project of the National Key Laboratory of Biochemical Engineeringthe Program of Introducing Talents of Discipline to Universities (BP0618007)。
文摘The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth investigation of repetitive motifs in various ice-binding proteins(IBPs)with evolution analysis.In this way,several peptides with notable antifreeze activity were developed.In particular,a designed antifreeze peptide named AVD exhibits ideal ice recrystallization inhibition(IRI),solubility,and biocompatibility,making it suitable for use as a cryoprotective agent(CPA).A mutation analysis and molecular dynamics(MD)simulations indicated that the Thr6 and Asn8 residues of the AVD peptide are fundamental to its ice-binding capacity,while the Ser18 residue can synergistically enhance their interaction with ice,revealing the antifreeze mechanism of AVD.Furthermore,to evaluate the cryoprotection potential of AVD,the peptide was successfully employed for the cryopreservation of various cells,which demonstrated significant post-freezing cell recovery.This work opens up a new avenue for designing antifreeze materials and provides peptide-based functional modules for synthetic biology.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant 62071179.
文摘Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations.
基金financial support of the National Natural Science Foundation of China(21776122).
文摘Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.
文摘Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to investigate the imaging features of intrahepatic portal vein in adult patients with CTPV and establish the relationship between the manifestations of intrahepatic portal vein and the progression of CTPV. Methods: We retrospectively analyzed 14 CTPV patients in Beijing Tsinghua Changgung Hospital. All patients underwent both direct portal venography(DPV) and computed tomography angiography(CTA) to reveal the manifestations of the portal venous system. The vessels measured included the left portal vein(LPV), right portal vein(RPV), main portal vein(MPV) and the portal vein bifurcation(PVB). Results: Nine males and 5 females, with a median age of 40.5 years, were included in the study. No significant difference was found in the diameters of the LPV or RPV measured by DPV and CTA. The visualization in terms of LPV, RPV and PVB measured by DPV was higher than that by CTA. There was a significant association between LPV/RPV and PVB/MPV in term of visibility revealed with DPV( P = 0.01), while this association was not observed with CTA. According to the imaging features of the portal vein measured by DPV, CTPV was classified into three categories to facilitate the diagnosis and treatment. Conclusions: DPV was more accurate than CTA for revealing the course of the intrahepatic portal vein in patients with CTPV. The classification of CTPV, that originated from the imaging features of the portal vein revealed by DPV, may provide a new perspective for the diagnosis and treatment of CTPV.
基金supported by the National Natural Science Foundation of China(32072780 and 32272900)the Earmarked Fund for Jiangsu Agricultural Industry Technology System(JATS[2023]418)。
文摘Background Wooden breast(WB)myopathy is a common myopathy found in commercial broiler chickens worldwide.Histological examination has revealed that WB myopathy is accompanied by damage to the pectoralis major(PM)muscle.However,the underlying mechanisms responsible for the formation of WB in broilers have not been fully elucidated.This study aimed to investigate the potential role of hypoxia-mediated programmed cell death(PCD)in the formation of WB myopathy.Results Histological examination and biochemical analysis were performed on the PM muscle of the control(CON)and WB groups.A significantly increased thickness of the breast muscle in the top,middle,and bottom portions(P<0.01)was found along with pathological structure damage of myofibers in the WB group.The number of capillaries per fiber in PM muscle,and the levels of p O_(2) and s O_(2) in the blood,were significantly decreased(P<0.01),while the levels of p CO_(2) and TCO_(2) in the blood were significantly increased(P<0.05),suggesting hypoxic conditions in the PM muscle of the WB group.We further evaluated the PCD-related pathways including autophagy,apoptosis,and necroptosis to understand the consequence response to enhanced hypoxic conditions in the PM muscle of birds with WB.The ratio of LC3 II to LC3 I,and the autophagy-related factors HIF-1α,BNIP3,Beclin1,AMPKα,and ULK1 at the m RNA and protein levels,were all significantly upregulated(P<0.05),showing that autophagy occurred in the PM muscle of the WB group.The apoptotic index,as well as the expressions of Bax,Cytc,caspase 9,and caspase 3,were significantly increased(P<0.05),whereas Bcl-2 was significantly decreased(P<0.05)in the WB-affected PM muscle,indicating the occurrence of apoptosis mediated by the mitochondrial pathway.Additionally,the expressions of necroptosis-related factors RIP1,RIP3,and MLKL,as well as NF-κB and the pro-inflammatory cytokines TNF-α,IL-1β,and IL-6,were all significantly enhanced(P<0.05)in the WB-affected PM muscle.Conclusions The WB myopathy reduces blood supply and induces hypoxia in the PM muscle,which is closely related to the occurrence of PCD including apoptosis,autophagy,and necroptosis within myofibers,and finally leads to abnormal muscle damage and the development of WB in broilers.
基金Supported by International Technology Cooperation Program of Science and Technology Commission of Shanghai Municipality of China(Grant No.21160710600)National Nature Science Foundation of China(Grant No.52372393)Shanghai Pujiang Program of China(Grant No.21PJD075).
文摘Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.
基金Supported by the National Science and Technology Basic Resources Investigation Program of China(No.2018 FY100206)the National Natural Science Foundation of China(No.31902370)+1 种基金the Ningbo Public Welfare Science and Technology Program(No.2022S161)the Key Program of Science and Technology Innovation in Ningbo(No.2023Z118)。
文摘The model diatom Phaeodactylum tricornutum is considered a promising source of various high value bioproducts,and developing cultivation processes is crucial for its commercialization.Although mixotrophy and heterotrophy have been recommended as effective strategies for microalgal cultivation,previous studies on P.tricornutum have yielded conflicting results in terms of cultivating this microalga.To verify the capacity of this microalga utilizing external organic carbon,both heterotrophic and mixotrophic cultivation with varied carbon sources were performed using an axenic strain.The results demonstrate that glycerol was the only organic carbon that substantially stimulated the growth of P.tricornutum in the presence of light.Sodium acetate(NaAc)at low concentrations could also promote growth,while at high concentrations led to severe inhibition under mixotrophic conditions.The addition of glucose imposed no appreciable impact on either cell density or biomass concentration,confirming that P.tricornutum cannot metabolize external glucose.Subsequently,a comparative analysis between mixotrophy and autotrophy was performed to reveal the influences of glycerol on the cellular metabolism based on growth performances,biochemical compositions,and chlorophyll fluorescence parameters.Results also indicate that the addition of glycerol did not have detrimental effects on the capacity of either pigments biosynthesis or photosynthesis,but enhanced the saturated fatty acids and reduced the unsaturated fatty acids.
基金financially supported by the National Key R&D Program of China(No.2021YFB3704000)the National Natural Science Foundation of China(Nos.52074032,51974029,52071013,and 52130407)+3 种基金the Beijing Natural Science Foundation(No.2232084)the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120033)the 111 Project(No.B170003)the Basic and Applied Basic Research Fund of Guangdong Province,China(No.BK20BE015).
文摘The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys.In this study,FGH96 alloy powders with various oxygen contents were investigated using high-resolution transmission electron microscopy and atomic probe technology to elucidate the structure evolution of the oxide film.Energy dispersive spectrometer analysis revealed the presence of two distinct components in the oxide film of the alloy powders:amorphous oxide layer covering the γ matrix and amorphous oxide particles above the carbide.The alloying elements within the oxide layer showed a laminated distribution,with Ni,Co,Cr,and Al/Ti,which was attributed to the decreasing oxygen equilibrium pressure as oxygen diffused from the surface into the γ matrix.On the other hand,Ti enrichment was observed in the oxide particles caused by the oxidation and decomposition of the carbide phase.Comparative analysis of the oxide film with oxygen contents of 140,280,and 340 ppm showed similar element distributions,while the thickness of the oxide film varies approximately at 9,14,and 30 nm,respectively.These findings provide valuable insights into the structural analysis of the oxide film on FGH96 alloy powders.
基金The authors gratefully acknowledge the support from the National Natural Science Foundation of China(Grant No.42377174)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022ME198)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020006).
文摘Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems.
基金the National Natural Science Foundation of China(52001173&52100190)the Jiangsu Specially-Appointed Professor Program,Natural Science Foundation of Jiangsu Province(BK20200970&BK20210834)+2 种基金General Project of Natural Science Research in Jiangsu Colleges and Universities(20KJB530011&20KJB430046)Research Fund of Nantong University(03083054)National College Students'innovation and entrepreneurship training program(202110304019Z)for financial support.
文摘In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic electrode exhibits no template requirement,freedom design,low-cost,robust,anticorrosion,lightweight,and micro-nano porous characteristics.It can be drawn to the conclusion that highly oriented open-porous 3D geometry structure will be beneficial for improving surface catalytic active area,wetting performance,and reaction–diffusion dynamics of plastic electrodes for oxygen evolution reaction(OER)catalysis process.Density functional theory(DFT)calculation interprets the origin of high activity of NiFe(PO_(3))O(OH)and demonstrates that the implantation of the–PO_(3)can effectively bind the 3d orbital of Ni in NiFe(PO_(3))O(OH),lead to the weak adsorption of intermediate,make electron more active to improve the conductivity,thereby lowing the transform free energy of*O to*OOH.The water oxidization performance of as-prepared 3D NiFe(PO_(3))O(OH)hollow tubular(HT)lattice plastic electrode has almost reached the state-of-the-art level compared with the as-reported large-current-density catalysts or 3D additive manufactured plastic/metal-based electrodes,especially for high current OER electrodes.This work breaks through the bottleneck that plagues the performance improvement of low-cost high-current electrodes.