A mathematical model for mixed convective slip flow with heat and mass transfer in the presence of thermal radiation is presented. A convective boundary condition is included and slip is simulated via the hydrodynamic...A mathematical model for mixed convective slip flow with heat and mass transfer in the presence of thermal radiation is presented. A convective boundary condition is included and slip is simulated via the hydrodynamic slip parameter. Heat generation and absorption effects are also incorporated. The Rosseland diffusion flux model is employed. The governing partial differential conservation equations are reduced to a system of coupled, ordinary differential equations via Lie group theory method. The resulting coupled equations are solved using shooting method. The influences of the emerging parameters on dimensionless velocity, tempera- ture and concentration distributions are investigated. Increasing radiative-conductive parameter accelerates the boundary layer flow and increases temperature whereas it depresses concentration. An elevation in convection-conduction parameter also accelerates the flow and temperatures whereas it reduces concentrations. Velocity near the wall is considerably boosted with increasing momentum slip parameter although both temperature and concentration boundary layer thicknesses are decreased. The presence of a heat source is found to increase momentum and thermal boundary layer thicknesses but reduces concentration boundary layer thickness. Excelle- nt correlation of the numerical solutions with previous non-slip studies is demonstrated. The current study has applications in bio- reactor diffusion flows and high-temperature chemical materials processing systems.展开更多
基金financial support from Universiti Sains Malaysia,(RU Grant No.1001/PMATHS/811252)
文摘A mathematical model for mixed convective slip flow with heat and mass transfer in the presence of thermal radiation is presented. A convective boundary condition is included and slip is simulated via the hydrodynamic slip parameter. Heat generation and absorption effects are also incorporated. The Rosseland diffusion flux model is employed. The governing partial differential conservation equations are reduced to a system of coupled, ordinary differential equations via Lie group theory method. The resulting coupled equations are solved using shooting method. The influences of the emerging parameters on dimensionless velocity, tempera- ture and concentration distributions are investigated. Increasing radiative-conductive parameter accelerates the boundary layer flow and increases temperature whereas it depresses concentration. An elevation in convection-conduction parameter also accelerates the flow and temperatures whereas it reduces concentrations. Velocity near the wall is considerably boosted with increasing momentum slip parameter although both temperature and concentration boundary layer thicknesses are decreased. The presence of a heat source is found to increase momentum and thermal boundary layer thicknesses but reduces concentration boundary layer thickness. Excelle- nt correlation of the numerical solutions with previous non-slip studies is demonstrated. The current study has applications in bio- reactor diffusion flows and high-temperature chemical materials processing systems.