Bromine has attracted significant attention as a cathode material for aqueous batteries due to its high reduction potential of 1.05 V(Br_(3)^(-)+2e~-■3Br~-),impressive theoretical specific capacity of 223 mA h g^(-1)...Bromine has attracted significant attention as a cathode material for aqueous batteries due to its high reduction potential of 1.05 V(Br_(3)^(-)+2e~-■3Br~-),impressive theoretical specific capacity of 223 mA h g^(-1),and rapid reaction kinetics in the electrolyte.However,searching for compatible anode materials to match with bromine has posed a challenge due to its highly corrosive nature.In this study,we developed oxygen-deficient MoO_(3) with TiO_(2) coating(referred to as MoO_(3-x)@TiO_(2))as an anode material to pair with a bromine cathode in static full batteries.The oxygen deficiency contributes to enhanced electronic and protonic diffusion within the MoO_(3-x)lattice,while the TiO_(2) coating mitigates structural dissolution and proton trapping during cycling.The MoO_(3-x)@TiO_(2) demonstrates fast charge storage kinetics and excellent resistance to bromine corrosion.The impressive compatibility between MoO_(3-x)@TiO_(2) and bromine enables the construction of membrane-less full batteries with exceptional rate capability and cyclic stability.The MoO_(3-x)@TiO_(2)-bromine battery achieves an energy density of70.8 W h kg^(-1)at a power density of 328.1 W kg^(-1),showcasing an impressive long-term cyclic life of 20,000 cycles.Our study provides valuable insights for the development of high-performance aqueous secondary batteries.展开更多
Malocclusion,identified by the World Health Organization(WHO)as one of three major oral diseases,profoundly impacts the dental-maxillofacial functions,facial esthetics,and long-term development of~260 million children...Malocclusion,identified by the World Health Organization(WHO)as one of three major oral diseases,profoundly impacts the dental-maxillofacial functions,facial esthetics,and long-term development of~260 million children in China.Beyond its physical manifestations,malocclusion also significantly influences the psycho-social well-being of these children.Timely intervention in malocclusion can foster an environment conducive to dental-maxillofacial development and substantially decrease the incidence of malocclusion or reduce the severity and complexity of malocclusion in the permanent dentition,by mitigating the negative impact of abnormal environmental influences on the growth.Early orthodontic treatment encompasses accurate identification and treatment of dental and maxillofacial morphological and functional abnormalities during various stages of dental-maxillofacial development,ranging from fetal stages to the early permanent dentition phase.From an economic and societal standpoint,the urgency for effective early orthodontic treatments for malocclusions in childhood cannot be overstated,underlining its profound practical and social importance.This consensus paper discusses the characteristics and the detrimental effects of malocclusion in children,emphasizing critical need for early treatment.It elaborates on corresponding core principles and fundamental approaches in early orthodontics,proposing comprehensive guidance for preventive and interceptive orthodontic treatment,serving as a reference for clinicians engaged in early orthodontic treatment.展开更多
SnO_(2),with its high theoretical capacity,abundant resources,and environmental friendliness,is widely regarded as a potential anode material for lithium-ion batteries(LIBs).Nevertheless,the coarsening of the Sn nanop...SnO_(2),with its high theoretical capacity,abundant resources,and environmental friendliness,is widely regarded as a potential anode material for lithium-ion batteries(LIBs).Nevertheless,the coarsening of the Sn nanoparticles impedes the reconversion back to SnO_(2),resulting in low coulombic efficiency and rapid capacity decay.In this study,we fabricated a heterostructure by combining SnO_(2)nanoparticles with MoS_(2)nanosheets via plasma-assisted milling.The heterostructure consists of in-situ exfoliated MoS_(2)nanosheets predominantly in 1 T phase,which tightly encase the SnO_(2)nanoparticles through strong bonding.This configuration effectively mitigates the volume change and particle aggregation upon cycling.Moreover,the strong affinity of Mo,which is the lithiation product of MoS_(2),toward Sn plays a pivotal role in inhibiting the coarsening of Sn nanograins,thus enhancing the reversibility of Sn to SnO_(2)upon cycling.Consequently,the SnO_(2)/MoS_(2)heterostructure exhibits superb performance as an anode material for LIBs,demonstrating high capacity,rapid rate capability,and extended lifespan.Specifically,discharged/charged at a rate of 0.2 A g^(-1)for 300 cycles,it achieves a remarkable reversible capacity of 1173.4 mAh g^(-1).Even cycled at high rates of 1.0 and 5.0 A g^(-1)for 800 cycles,it still retains high reversible capacities of 1005.3 and 768.8 mAh g^(-1),respectively.Moreover,the heterostructure exhibits outstanding electrochemical performance in both full LIBs and sodium-ion batteries.展开更多
Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems...Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems.展开更多
Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames,a feat unattain-able with Flash or DRAM.Intel Optane,commonly referred to as three-dimen...Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames,a feat unattain-able with Flash or DRAM.Intel Optane,commonly referred to as three-dimensional phase change memory,stands out as one of the most promising candidates.The Optane with cross-point architecture is constructed through layering a storage element and a selector known as the ovonic threshold switch(OTS).The OTS device,which employs chalcogenide film,has thereby gathered increased attention in recent years.In this paper,we begin by providing a brief introduction to the discovery process of the OTS phenomenon.Subsequently,we summarize the key elec-trical parameters of OTS devices and delve into recent explorations of OTS materials,which are categorized as Se-based,Te-based,and S-based material systems.Furthermore,we discuss various models for the OTS switching mechanism,including field-induced nucleation model,as well as several carrier injection models.Additionally,we review the progress and innovations in OTS mechanism research.Finally,we highlight the successful application of OTS devices in three-dimensional high-density memory and offer insights into their promising performance and extensive prospects in emerging applications,such as self-selecting memory and neuromorphic computing.展开更多
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp...Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety.展开更多
In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the...In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder.展开更多
The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accur...The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accurately identifying warning signals of infectious diseases in a timely manner,especially emerging infectious diseases,can be challenging.Consequently,there is a pressing need to integrate treatment and disease prevention data to conduct comprehensive analyses aimed at preventing and controlling infectious diseases within hospitals.This paper examines the role of medical data in the early identification of infectious diseases,explores early warning technologies for infectious disease recognition,and assesses monitoring and early warning mechanisms for infectious diseases.We propose that hospitals adopt novel multidimensional early warning technologies to mine and analyze medical data from various systems,in compliance with national strategies to integrate clinical treatment and disease prevention.Furthermore,hospitals should establish institution-specific,clinical-based early warning models for infectious diseases to actively monitor early signals and enhance preparedness for infectious disease prevention and control.展开更多
Objective Renal fibrosis is the ultimate pathway of various forms of acute and chronic kidney damage.Notably,the knockout of transient receptor potential channel 6(TRPC6)has shown promise in alleviating renal fibrosis...Objective Renal fibrosis is the ultimate pathway of various forms of acute and chronic kidney damage.Notably,the knockout of transient receptor potential channel 6(TRPC6)has shown promise in alleviating renal fibrosis.However,the regulatory impact of TRPC6 on renal fibrosis remains unclear.Methods In vivo,TRPC6 knockout(TRPC6−/−)mice and age-matched 129 SvEv(WT)mice underwent unilateral renal ischemia-reperfusion(uIR)injury surgery on the left renal pedicle or sham operation.Kidneys and serum were collected on days 7,14,21,and 28 after euthanasia.In vitro,primary tubular epithelial cells(PTECs)were isolated from TRPC6−/−and WT mice,followed by treatment with transforming growth factorβ1(TGFβ1)for 72 h.The anti-fibrotic effect of TRPC6−/−and the underlying mechanisms were assessed through hematoxylin-eosin staining,Masson staining,immunostaining,qRT-PCR,and Western blotting.Results Increased TRPC6 expression was observed in uIR mice and PTECs treated with TGFβ1.TRPC6−/−alleviated renal fibrosis by reducing the expression of fibrotic markers(Col-1,α-SMA,and vimentin),as well as decreasing the apoptosis and inflammation of PTECs during fibrotic progression both in vivo and in vitro.Additionally,we found that the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/glycogen synthase kinase 3 beta(GSK3β)signaling pathway,a pivotal player in renal fibrosis,was down-regulated following TRPC6 deletion.Conclusion These results suggest that the ablation of TRPC6 may mitigate renal fibrosis by inhibiting the apoptosis and inflammation of PTECs through down-regulation of the PI3K/AKT/GSK3βpathway.Targeting TRPC6 could be a novel therapeutic strategy for preventing chronic kidney disease.展开更多
Background:To reduce adolescents’social anxiety,the study integrates external factors(social media usage)with internal factors(imaginary audience and appearance-based self-esteem)to internal mechanisms of adolescents...Background:To reduce adolescents’social anxiety,the study integrates external factors(social media usage)with internal factors(imaginary audience and appearance-based self-esteem)to internal mechanisms of adolescents’social anxiety in the Internet age based on objective self-awareness theory and self-esteem importance weighting model.Methods:Utilizing the Social Media Usage Intensity Scale,Social Anxiety Scale,imaginary Audience Scale,and Physical Self Questionnaire,we surveyed 400 junior high school students from three schools in Hubei province,China.Results:A significantly positive correlation is revealed between the intensity of social media usage and both social anxiety and imaginary audience(p<0.001).Conversely,social media usage intensity and appearance self-esteem are significantly negatively correlated(p<0.001).Additionally,the perception of an imaginary audience was negatively correlated with appearance self-esteem(p<0.001).Furthermore,we found that imaginary audience(indirect effect of 0.14,95%CI=[0.02,0.07])and appearance self-esteem(indirect effect of 0.14,95%CI=[0.02,0.07])can respectively act as independent mediators between social networking site use intensity and social anxiety,Additionally,the relationship between imaginary audience and appearance self-esteem can also be chain-mediated(indirect effect of 0.03,95%CI=[0.00,0.02])separately affect the relationship between the two.Conclusion:The imaginary audience serves as an independent mediator that links social media usage intensity to social anxiety among adolescents.Additionally,the observed chain mediation effect involving both the imaginary audience and appearance self-esteem provides novel insights for developing strategies aimed at addressing adolescent social anxiety.展开更多
The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemical...The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemicals and fuels.However,this reaction is mildly endothermic and competed by a strongly exothermic CO2 methanation reaction at low temperatures.Therefore,the improvement in the low-temperature activities and selectivity of the RWGS reaction is a key challenge for catalyst designs.We reviewed recent advances in the design strategies of supported metal catalysts for enhancing the activity of CO2 conversion and its selectivity to CO.These strategies include varying support,tuning metal–support interactions,adding reducible transition metal oxide promoters,forming bimetallic alloys,adding alkali metals,and enveloping metal particles.These advances suggest that enhancing CO2 adsorption and facilitating CO desorption are key factors to enhance CO2 conversion and CO selectivity.This short review may provide insights into future RWGS catalyst designs and optimization.展开更多
In MEC-enabled vehicular network with limited wireless resource and computation resource,stringent delay and high reliability requirements are challenging issues.In order to reduce the total delay in the network as we...In MEC-enabled vehicular network with limited wireless resource and computation resource,stringent delay and high reliability requirements are challenging issues.In order to reduce the total delay in the network as well as ensure the reliability of Vehicular UE(VUE),a Joint Allocation of Wireless resource and MEC Computing resource(JAWC)algorithm is proposed.The JAWC algorithm includes two steps:V2X links clustering and MEC computation resource scheduling.In the V2X links clustering,a Spectral Radius based Interference Cancellation scheme(SR-IC)is proposed to obtain the optimal resource allocation matrix.By converting the calculation of SINR into the calculation of matrix maximum row sum,the accumulated interference of VUE can be constrained and the the SINR calculation complexity can be effectively reduced.In the MEC computation resource scheduling,by transforming the original optimization problem into a convex problem,the optimal task offloading proportion of VUE and MEC computation resource allocation can be obtained.The simulation further demonstrates that the JAWC algorithm can significantly reduce the total delay as well as ensure the communication reliability of VUE in the MEC-enabled vehicular network.展开更多
O3-type Na NiO_(2)-based cathode materials undergo irreversible phase transition and serious capacity decay at high voltage above 4.0 V in sodium-ion batteries. To address these challenges, effects of Fsubstitution on...O3-type Na NiO_(2)-based cathode materials undergo irreversible phase transition and serious capacity decay at high voltage above 4.0 V in sodium-ion batteries. To address these challenges, effects of Fsubstitution on the structure and electrochemical performance of Na Ni_(0.4)Mn_(0.25)Ti_(0.3)Co_(0.05)O_(2) are investigated in this article. The F-substitution leads to expanding of interlayer, which can enhance the mobility of Na+. NaNi_(0.4)Mn_(0.25)Ti_(0.3)Co_(0.05)O_(1.92)F_(0.08)(NMTC-F_(0.08)) with the optimal F-substitution degree exhibits much improved rate capability and cyclic stability. It delivers reversible capacities of 177 and 97 m Ah g^(-1) at 0.05 and 5 C within 2.0–4.4 V, respectively. Galvanostatic intermittent titration technique verifies faster kinetics of Na+diffusion in NMTC-F_(0.08). And in-situ XRD investigation reveals the phase evolution of NMTC-F_(0.08), indicating enhanced structural stability results from F-substitution. This study may shed light on the development of high performance cathode materials for sodium-ion storage at high voltage.展开更多
The effect of microstructure and passive film on the corrosion resistance of 2507 super duplex stainless steel(SDSS)in simulated marine environment was investigated by electrochemical measurements,periodic wet–dry cy...The effect of microstructure and passive film on the corrosion resistance of 2507 super duplex stainless steel(SDSS)in simulated marine environment was investigated by electrochemical measurements,periodic wet–dry cyclic corrosion test,scanning Kelvin probe force microscopy,atomic force microscopy,and X-ray photoelectron spectrometry.The results show that the occupation ratio ofγphase increases with the decrease in cooling rate,whereas the content ofαphase reduces gradually.In addition,theσprecipitated phase only emerges in the annealed steel.The pitting sensitivity and corrosion rate of 2507 SDSS reduce first and then increase as the cooling rate decreases.Theσprecipitated phase drastically reduces the protective ability of the passive film and facilitates micro-galvanic corrosion of the annealed steel.For various microstructures,the pits are preferentially distributed within theσandγphases.The corrosion resistance of 2507 SDSS prepared by different cooling methods is closely related to the microstructure and structure(stability and homogeneity)of the passive film.Normalized steel shows an optimal corrosion resistance,followed by the quenched and annealed steels.展开更多
基金the financial support from the National Key Research and Development Program of China(2022YFB2502003)the Guangdong Basic and Applied Basic Research Foundation(2023B1515040011)。
文摘Bromine has attracted significant attention as a cathode material for aqueous batteries due to its high reduction potential of 1.05 V(Br_(3)^(-)+2e~-■3Br~-),impressive theoretical specific capacity of 223 mA h g^(-1),and rapid reaction kinetics in the electrolyte.However,searching for compatible anode materials to match with bromine has posed a challenge due to its highly corrosive nature.In this study,we developed oxygen-deficient MoO_(3) with TiO_(2) coating(referred to as MoO_(3-x)@TiO_(2))as an anode material to pair with a bromine cathode in static full batteries.The oxygen deficiency contributes to enhanced electronic and protonic diffusion within the MoO_(3-x)lattice,while the TiO_(2) coating mitigates structural dissolution and proton trapping during cycling.The MoO_(3-x)@TiO_(2) demonstrates fast charge storage kinetics and excellent resistance to bromine corrosion.The impressive compatibility between MoO_(3-x)@TiO_(2) and bromine enables the construction of membrane-less full batteries with exceptional rate capability and cyclic stability.The MoO_(3-x)@TiO_(2)-bromine battery achieves an energy density of70.8 W h kg^(-1)at a power density of 328.1 W kg^(-1),showcasing an impressive long-term cyclic life of 20,000 cycles.Our study provides valuable insights for the development of high-performance aqueous secondary batteries.
基金supported by the National Natural Science Foundation of China(82171001,82222015)Research Funding from West China School/Hospital of Stomatology Sichuan University(RCDWJS2023-1)Align Technology Specialized Scientific Research Fund(21H0922).
文摘Malocclusion,identified by the World Health Organization(WHO)as one of three major oral diseases,profoundly impacts the dental-maxillofacial functions,facial esthetics,and long-term development of~260 million children in China.Beyond its physical manifestations,malocclusion also significantly influences the psycho-social well-being of these children.Timely intervention in malocclusion can foster an environment conducive to dental-maxillofacial development and substantially decrease the incidence of malocclusion or reduce the severity and complexity of malocclusion in the permanent dentition,by mitigating the negative impact of abnormal environmental influences on the growth.Early orthodontic treatment encompasses accurate identification and treatment of dental and maxillofacial morphological and functional abnormalities during various stages of dental-maxillofacial development,ranging from fetal stages to the early permanent dentition phase.From an economic and societal standpoint,the urgency for effective early orthodontic treatments for malocclusions in childhood cannot be overstated,underlining its profound practical and social importance.This consensus paper discusses the characteristics and the detrimental effects of malocclusion in children,emphasizing critical need for early treatment.It elaborates on corresponding core principles and fundamental approaches in early orthodontics,proposing comprehensive guidance for preventive and interceptive orthodontic treatment,serving as a reference for clinicians engaged in early orthodontic treatment.
基金the financial support from the National Key Research and Development Program of China(2018YFA0209402,2022YFB2502003)Guangdong Basic and Applied Basic Research Foundation(2023B1515040011)Jiangxi Provincial Natural Science Foundation(20212BAB214028)
文摘SnO_(2),with its high theoretical capacity,abundant resources,and environmental friendliness,is widely regarded as a potential anode material for lithium-ion batteries(LIBs).Nevertheless,the coarsening of the Sn nanoparticles impedes the reconversion back to SnO_(2),resulting in low coulombic efficiency and rapid capacity decay.In this study,we fabricated a heterostructure by combining SnO_(2)nanoparticles with MoS_(2)nanosheets via plasma-assisted milling.The heterostructure consists of in-situ exfoliated MoS_(2)nanosheets predominantly in 1 T phase,which tightly encase the SnO_(2)nanoparticles through strong bonding.This configuration effectively mitigates the volume change and particle aggregation upon cycling.Moreover,the strong affinity of Mo,which is the lithiation product of MoS_(2),toward Sn plays a pivotal role in inhibiting the coarsening of Sn nanograins,thus enhancing the reversibility of Sn to SnO_(2)upon cycling.Consequently,the SnO_(2)/MoS_(2)heterostructure exhibits superb performance as an anode material for LIBs,demonstrating high capacity,rapid rate capability,and extended lifespan.Specifically,discharged/charged at a rate of 0.2 A g^(-1)for 300 cycles,it achieves a remarkable reversible capacity of 1173.4 mAh g^(-1).Even cycled at high rates of 1.0 and 5.0 A g^(-1)for 800 cycles,it still retains high reversible capacities of 1005.3 and 768.8 mAh g^(-1),respectively.Moreover,the heterostructure exhibits outstanding electrochemical performance in both full LIBs and sodium-ion batteries.
基金funded by the National Natural Science Foundation of China(62072056,62172058)the Researchers Supporting Project Number(RSP2023R102)King Saud University,Riyadh,Saudi Arabia+4 种基金funded by the Hunan Provincial Key Research and Development Program(2022SK2107,2022GK2019)the Natural Science Foundation of Hunan Province(2023JJ30054)the Foundation of State Key Laboratory of Public Big Data(PBD2021-15)the Young Doctor Innovation Program of Zhejiang Shuren University(2019QC30)Postgraduate Scientific Research Innovation Project of Hunan Province(CX20220940,CX20220941).
文摘Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems.
基金M.Zhu acknowledges support by the National Outstanding Youth Program(62322411)the Hundred Talents Program(Chinese Academy of Sciences)+1 种基金the Shanghai Rising-Star Program(21QA1410800)The financial support was provided by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB44010200).
文摘Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames,a feat unattain-able with Flash or DRAM.Intel Optane,commonly referred to as three-dimensional phase change memory,stands out as one of the most promising candidates.The Optane with cross-point architecture is constructed through layering a storage element and a selector known as the ovonic threshold switch(OTS).The OTS device,which employs chalcogenide film,has thereby gathered increased attention in recent years.In this paper,we begin by providing a brief introduction to the discovery process of the OTS phenomenon.Subsequently,we summarize the key elec-trical parameters of OTS devices and delve into recent explorations of OTS materials,which are categorized as Se-based,Te-based,and S-based material systems.Furthermore,we discuss various models for the OTS switching mechanism,including field-induced nucleation model,as well as several carrier injection models.Additionally,we review the progress and innovations in OTS mechanism research.Finally,we highlight the successful application of OTS devices in three-dimensional high-density memory and offer insights into their promising performance and extensive prospects in emerging applications,such as self-selecting memory and neuromorphic computing.
基金the National Natural Science Foundation of China(Nos.62272063,62072056 and 61902041)the Natural Science Foundation of Hunan Province(Nos.2022JJ30617 and 2020JJ2029)+4 种基金Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications(No.JZNY202102)the Traffic Science and Technology Project of Hunan Province,China(No.202042)Hunan Provincial Key Research and Development Program(No.2022GK2019)this work was funded by the Researchers Supporting Project Number(RSPD2023R681)King Saud University,Riyadh,Saudi Arabia.
文摘Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety.
基金supported by 173 Program of China,and National Natural Science Foundation of China(No.92271116).
文摘In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder.
文摘The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accurately identifying warning signals of infectious diseases in a timely manner,especially emerging infectious diseases,can be challenging.Consequently,there is a pressing need to integrate treatment and disease prevention data to conduct comprehensive analyses aimed at preventing and controlling infectious diseases within hospitals.This paper examines the role of medical data in the early identification of infectious diseases,explores early warning technologies for infectious disease recognition,and assesses monitoring and early warning mechanisms for infectious diseases.We propose that hospitals adopt novel multidimensional early warning technologies to mine and analyze medical data from various systems,in compliance with national strategies to integrate clinical treatment and disease prevention.Furthermore,hospitals should establish institution-specific,clinical-based early warning models for infectious diseases to actively monitor early signals and enhance preparedness for infectious disease prevention and control.
基金supported by grants from the National Natural Science Foundation of China(Nos.31171087,30970662,and 82100715)the Henan Medical Science and Technology Research Program(Joint Construction,No.LHGJ20190246).
文摘Objective Renal fibrosis is the ultimate pathway of various forms of acute and chronic kidney damage.Notably,the knockout of transient receptor potential channel 6(TRPC6)has shown promise in alleviating renal fibrosis.However,the regulatory impact of TRPC6 on renal fibrosis remains unclear.Methods In vivo,TRPC6 knockout(TRPC6−/−)mice and age-matched 129 SvEv(WT)mice underwent unilateral renal ischemia-reperfusion(uIR)injury surgery on the left renal pedicle or sham operation.Kidneys and serum were collected on days 7,14,21,and 28 after euthanasia.In vitro,primary tubular epithelial cells(PTECs)were isolated from TRPC6−/−and WT mice,followed by treatment with transforming growth factorβ1(TGFβ1)for 72 h.The anti-fibrotic effect of TRPC6−/−and the underlying mechanisms were assessed through hematoxylin-eosin staining,Masson staining,immunostaining,qRT-PCR,and Western blotting.Results Increased TRPC6 expression was observed in uIR mice and PTECs treated with TGFβ1.TRPC6−/−alleviated renal fibrosis by reducing the expression of fibrotic markers(Col-1,α-SMA,and vimentin),as well as decreasing the apoptosis and inflammation of PTECs during fibrotic progression both in vivo and in vitro.Additionally,we found that the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/glycogen synthase kinase 3 beta(GSK3β)signaling pathway,a pivotal player in renal fibrosis,was down-regulated following TRPC6 deletion.Conclusion These results suggest that the ablation of TRPC6 may mitigate renal fibrosis by inhibiting the apoptosis and inflammation of PTECs through down-regulation of the PI3K/AKT/GSK3βpathway.Targeting TRPC6 could be a novel therapeutic strategy for preventing chronic kidney disease.
基金supported by the Ministry of Education of Humanities and Social Science project(2022YJA190006)Research Program Funds of the Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University(2023-04-010-BZPKO1).
文摘Background:To reduce adolescents’social anxiety,the study integrates external factors(social media usage)with internal factors(imaginary audience and appearance-based self-esteem)to internal mechanisms of adolescents’social anxiety in the Internet age based on objective self-awareness theory and self-esteem importance weighting model.Methods:Utilizing the Social Media Usage Intensity Scale,Social Anxiety Scale,imaginary Audience Scale,and Physical Self Questionnaire,we surveyed 400 junior high school students from three schools in Hubei province,China.Results:A significantly positive correlation is revealed between the intensity of social media usage and both social anxiety and imaginary audience(p<0.001).Conversely,social media usage intensity and appearance self-esteem are significantly negatively correlated(p<0.001).Additionally,the perception of an imaginary audience was negatively correlated with appearance self-esteem(p<0.001).Furthermore,we found that imaginary audience(indirect effect of 0.14,95%CI=[0.02,0.07])and appearance self-esteem(indirect effect of 0.14,95%CI=[0.02,0.07])can respectively act as independent mediators between social networking site use intensity and social anxiety,Additionally,the relationship between imaginary audience and appearance self-esteem can also be chain-mediated(indirect effect of 0.03,95%CI=[0.00,0.02])separately affect the relationship between the two.Conclusion:The imaginary audience serves as an independent mediator that links social media usage intensity to social anxiety among adolescents.Additionally,the observed chain mediation effect involving both the imaginary audience and appearance self-esteem provides novel insights for developing strategies aimed at addressing adolescent social anxiety.
基金the National Key Research and Development Program of China(No.2016YFB0600900)the National Natural Science Foundation of China(Nos.21676194 and 21873067)for their support。
文摘The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemicals and fuels.However,this reaction is mildly endothermic and competed by a strongly exothermic CO2 methanation reaction at low temperatures.Therefore,the improvement in the low-temperature activities and selectivity of the RWGS reaction is a key challenge for catalyst designs.We reviewed recent advances in the design strategies of supported metal catalysts for enhancing the activity of CO2 conversion and its selectivity to CO.These strategies include varying support,tuning metal–support interactions,adding reducible transition metal oxide promoters,forming bimetallic alloys,adding alkali metals,and enveloping metal particles.These advances suggest that enhancing CO2 adsorption and facilitating CO desorption are key factors to enhance CO2 conversion and CO selectivity.This short review may provide insights into future RWGS catalyst designs and optimization.
基金This work was supported in part by the National Key R&D Program of China under Grant 2019YFE0114000in part by the National Natural Science Foundation of China under Grant 61701042+1 种基金in part by the 111 Project of China(Grant No.B16006)the research foundation of Ministry of EducationChina Mobile under Grant MCM20180101.
文摘In MEC-enabled vehicular network with limited wireless resource and computation resource,stringent delay and high reliability requirements are challenging issues.In order to reduce the total delay in the network as well as ensure the reliability of Vehicular UE(VUE),a Joint Allocation of Wireless resource and MEC Computing resource(JAWC)algorithm is proposed.The JAWC algorithm includes two steps:V2X links clustering and MEC computation resource scheduling.In the V2X links clustering,a Spectral Radius based Interference Cancellation scheme(SR-IC)is proposed to obtain the optimal resource allocation matrix.By converting the calculation of SINR into the calculation of matrix maximum row sum,the accumulated interference of VUE can be constrained and the the SINR calculation complexity can be effectively reduced.In the MEC computation resource scheduling,by transforming the original optimization problem into a convex problem,the optimal task offloading proportion of VUE and MEC computation resource allocation can be obtained.The simulation further demonstrates that the JAWC algorithm can significantly reduce the total delay as well as ensure the communication reliability of VUE in the MEC-enabled vehicular network.
基金financial support from the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. NSFC51621001)the Guangdong Special Support Program (2017TQ04N224)+1 种基金the Guangdong Natural Science Funds for Distinguished Young Scholar (Grant No. 2017B030306004)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme。
文摘O3-type Na NiO_(2)-based cathode materials undergo irreversible phase transition and serious capacity decay at high voltage above 4.0 V in sodium-ion batteries. To address these challenges, effects of Fsubstitution on the structure and electrochemical performance of Na Ni_(0.4)Mn_(0.25)Ti_(0.3)Co_(0.05)O_(2) are investigated in this article. The F-substitution leads to expanding of interlayer, which can enhance the mobility of Na+. NaNi_(0.4)Mn_(0.25)Ti_(0.3)Co_(0.05)O_(1.92)F_(0.08)(NMTC-F_(0.08)) with the optimal F-substitution degree exhibits much improved rate capability and cyclic stability. It delivers reversible capacities of 177 and 97 m Ah g^(-1) at 0.05 and 5 C within 2.0–4.4 V, respectively. Galvanostatic intermittent titration technique verifies faster kinetics of Na+diffusion in NMTC-F_(0.08). And in-situ XRD investigation reveals the phase evolution of NMTC-F_(0.08), indicating enhanced structural stability results from F-substitution. This study may shed light on the development of high performance cathode materials for sodium-ion storage at high voltage.
基金financially supported by the National Natural Science Foundation of China(No.51871026)the Natural Science Foundation of Zhejiang Province,China(No.LY18E010004)supported by the National Material Environmental Corrosion Infrastructure,China。
文摘The effect of microstructure and passive film on the corrosion resistance of 2507 super duplex stainless steel(SDSS)in simulated marine environment was investigated by electrochemical measurements,periodic wet–dry cyclic corrosion test,scanning Kelvin probe force microscopy,atomic force microscopy,and X-ray photoelectron spectrometry.The results show that the occupation ratio ofγphase increases with the decrease in cooling rate,whereas the content ofαphase reduces gradually.In addition,theσprecipitated phase only emerges in the annealed steel.The pitting sensitivity and corrosion rate of 2507 SDSS reduce first and then increase as the cooling rate decreases.Theσprecipitated phase drastically reduces the protective ability of the passive film and facilitates micro-galvanic corrosion of the annealed steel.For various microstructures,the pits are preferentially distributed within theσandγphases.The corrosion resistance of 2507 SDSS prepared by different cooling methods is closely related to the microstructure and structure(stability and homogeneity)of the passive film.Normalized steel shows an optimal corrosion resistance,followed by the quenched and annealed steels.