期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Genetic Improvement of Rice for Bacterial Blight Resistance:Present Status and Future Prospects 被引量:3
1
作者 R.ABDUL FIYAZ D.SHIVANI +6 位作者 K.CHAITHANYA K.MOUNIKA M.CHIRANJEEVI G.S.LAHA B.C.VIRAKTAMATH L.V.SUBBA RAO r.m.sundaram 《Rice science》 SCIE CSCD 2022年第2期118-132,共15页
The production and productivity of rice has been challenged due to biotic and abiotic factors.Bacterial blight(BB)disease,caused by Xanthomonas oryzae pv.oryzae,is one of the important biotic stress factors,which redu... The production and productivity of rice has been challenged due to biotic and abiotic factors.Bacterial blight(BB)disease,caused by Xanthomonas oryzae pv.oryzae,is one of the important biotic stress factors,which reduces rice production by 20%-50%.The deployment of host plant resistance is the most preferred strategy for management of BB disease,and breeding disease resistant varieties remains a very economical and effective option.However,it is difficult to develop rice varieties with durable broad-spectrum resistance against BB using conventional approaches alone.Modern biotechnological tools,particularly the deployment of molecular markers,have facilitated the cloning,characterization and introgression of BB resistance genes into elite varieties.At least 46 BB resistance genes have been identified and mapped from diverse sources till date.Among these,11 genes have been cloned and characterized.Marker-assisted breeding remains the most efficient approach to improve BB resistance by introducing two or more resistance genes into target varieties.Among the identified genes,xa5,xa13 and Xa21 are being widely used in marker-assisted breeding and more than 70 rice varieties or hybrid rice parental lines have been improved for their BB resistance alone or in combination with genes/QTLs conferring tolerance to other stress.We review the developments related to identification and utilization of various resistance genes to develop BB resistant rice varieties through marker-assisted breeding. 展开更多
关键词 RICE bacterial blight resistance gene marker-assisted breeding gene pyramiding
下载PDF
Marker-Assisted Pyramiding of Genes Conferring ResistanceAgainst Bacterial Blight and Blast Diseases into Indian RiceVariety MTU1010 被引量:3
2
作者 k.arunakumari c.v.durgarani +10 位作者 v.satturu k.r.sarikonda p.d.r.chittoor b.vutukuri g.s.laha a.p.k.nelli s.gattu m.jamal a.prasadbabu s.hajira r.m.sundaram 《Rice science》 SCIE CSCD 2016年第6期306-316,共11页
Two major bacterial blight (BB) resistance genes (Xa21 and xa13) and a major gene for blastresistance (Pi54) were introgressed into an Indian rice variety MTU1010 through marker-assistedbackcross breeding. Impro... Two major bacterial blight (BB) resistance genes (Xa21 and xa13) and a major gene for blastresistance (Pi54) were introgressed into an Indian rice variety MTU1010 through marker-assistedbackcross breeding. Improved Samba Mahsuri (possessing Xa21 and xa13) and NLR145 (possessingPi54) were used as donor parents. Marker-assisted backcrossing was continued till BC2 generationwherein PCR based functional markers specific for the resistance genes were used for foregroundselection and a set of parental polymorphic microsatellite markers were used for background selectionat each stage of backcrossing. Selected BC2F1 plants from both crosses, having the highest recoveriesof MTU1010 genome (90% and 92%, respectively), were intercrossed to obtain intercross F1 (ICF1) plants,which were then selfed to generate 880 ICF2 plants possessing different combinations of the BB andblast resistance genes. Among the ICF2 plants, seven triple homozygous plants (xa13xa13Xa21Xa21Pi54Pi54)with recurrent parent genome recovery ranging from 82% to 92% were identified. All the seven ICF2plants showed high resistance against the bacterial blight disease with a lesion lengths of only 0.53–2.28 cm, 1%–5% disease leaf areas and disease scoring values of ‘1’ or ‘3’. The seven ICF2 plants wereselfed to generate ICF3, which were then screened for blast resistance, and all were observed to behighly resistant to the diseases. Several ICF3 lines possessing high level of resistance against BB andblast, coupled with yield, grain quality and plant type on par with MTU1010 were identified and advanced forfurther selection and evaluation. 展开更多
关键词 gene pyramiding bacterial blight resistance blast resistance RICE marker-assistedbackcross breeding
下载PDF
Infection of Early and Young Callus Tissues of Indica Rice BPT5204 Enhances Regeneration and Transformation Efficiency 被引量:1
3
作者 P.MANIMARAN G.RAVI KUMAR +6 位作者 M.RAGHURAMI REDDY S.JAIN T.BHASKAR RAO S.K.MANGRAUTHIA r.m.sundaram S.RAVICHANDRAN S.M.BALACHANDRAN 《Rice science》 SCIE 2013年第6期415-426,共12页
A rapid and reproducible method to develop transgenic plants with enhanced transformation efficiency using Agrobacterium has been developed for the elite indica rice variety BPT 5204. Different rice calli aged from 3 ... A rapid and reproducible method to develop transgenic plants with enhanced transformation efficiency using Agrobacterium has been developed for the elite indica rice variety BPT 5204. Different rice calli aged from 3 to 30 d were co-cultivated with pre-incubated Agrobacterium suspension culture (LBA4404: pSB1, pCAMBIA1301) and incubated in dark for 3 d. Based on the transient GUS gene expression analysis, 6-day-old young calli showed high transformation frequency followed by 21-day-old ones. Thus, both 6-and 21-day-old calli were used for assessing the stable transformation efficiency. It was observed that the 6-day-old young transformed calli showed about 2-fold higher regeneration frequency when compared with 21-day-old calli. The transformation efficiency was enhanced for young calli to 5.9% compared with 0.8% of the 21-day-old calli. Molecular and genetic analysis of transgenic plants (To) revealed the presence of 1-2 copies of T-DNA integration in transformants and it follows Mendalian ratio in T1 transgenic plants. From the present study, it was concluded that the development of transgenic rice plants in less duration with high regeneration and transformation efficiency was achieved in BPT 5204 by using 6-day-old young calli as explants. 展开更多
关键词 Agrobacterium-mediated transformation meihod rice callus TRANSFORMATION transgenicplant indica rice
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部