To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and...To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and the raw data matrix, whichare consistent with the fractional order accumulative grey model(FAGM (1,1)). Following this, this paper decomposes the accumulativedata difference matrix into the accumulative generationmatrix, the q-order reductive accumulative matrix and the rawdata matrix, and then combines the least square method, findingthat the differential order affects the model parameters only byaffecting the formation of differential sequences. This paper thensummarizes matrix decomposition of some special sequences,such as the sequence generated by the strengthening and weakeningoperators, the jumping sequence, and the non-equidistancesequence. Finally, this paper expresses the influences of the rawdata transformation, the accumulation sequence transformation,and the differential matrix transformation on the model parametersas matrices, and takes the non-equidistance sequence as an exampleto show the modeling mechanism.展开更多
The morbidity problem of the GM(1,1) power model in parameter identification is discussed by using multiple and rotation transformation of vectors. Firstly we consider the morbidity problem of the special matrix and...The morbidity problem of the GM(1,1) power model in parameter identification is discussed by using multiple and rotation transformation of vectors. Firstly we consider the morbidity problem of the special matrix and prove that the condition number of the coefficient matrix is determined by the ratio of lengths and the included angle of the column vector, which could be adjusted by multiple and rotation transformation to turn the matrix to a well-conditioned one. Then partition the corresponding matrix of the GM(1,1) power model in accordance with the column vector and regulate the matrix to a well-conditioned one by multiple and rotation transformation of vectors, which completely solve the instability problem of the GM(1,1) power model. Numerical results show that vector transformation is a new method in studying the stability problem of the GM(1,1) power model.展开更多
基金supported by the National Natural Science Foundation of China(5147915151279149+2 种基金71540027)the China Postdoctoral Science Foundation Special Foundation Project(2013T607552012M521487)
文摘To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and the raw data matrix, whichare consistent with the fractional order accumulative grey model(FAGM (1,1)). Following this, this paper decomposes the accumulativedata difference matrix into the accumulative generationmatrix, the q-order reductive accumulative matrix and the rawdata matrix, and then combines the least square method, findingthat the differential order affects the model parameters only byaffecting the formation of differential sequences. This paper thensummarizes matrix decomposition of some special sequences,such as the sequence generated by the strengthening and weakeningoperators, the jumping sequence, and the non-equidistancesequence. Finally, this paper expresses the influences of the rawdata transformation, the accumulation sequence transformation,and the differential matrix transformation on the model parametersas matrices, and takes the non-equidistance sequence as an exampleto show the modeling mechanism.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(20120143110001)the General Education Program Requirements in the Humanities and Social Sciences of China(11YJC630155)the Youth Foundation of Hubei Province of China(Q20121203)
文摘The morbidity problem of the GM(1,1) power model in parameter identification is discussed by using multiple and rotation transformation of vectors. Firstly we consider the morbidity problem of the special matrix and prove that the condition number of the coefficient matrix is determined by the ratio of lengths and the included angle of the column vector, which could be adjusted by multiple and rotation transformation to turn the matrix to a well-conditioned one. Then partition the corresponding matrix of the GM(1,1) power model in accordance with the column vector and regulate the matrix to a well-conditioned one by multiple and rotation transformation of vectors, which completely solve the instability problem of the GM(1,1) power model. Numerical results show that vector transformation is a new method in studying the stability problem of the GM(1,1) power model.