The apple orchard in Qixia City, Yantai City, Shandong Province was used as the research area. The nitrogen content inversion of apple canopy was studied by using the satellite remote sensing images of GF-1. On the ba...The apple orchard in Qixia City, Yantai City, Shandong Province was used as the research area. The nitrogen content inversion of apple canopy was studied by using the satellite remote sensing images of GF-1. On the basis of GF-1 satellite multispectral image preprocessing, vegetation index was extracted by band math. The nitrogen sensitive vegetation index of apple canopy was selected by correlation analysis of nitrogen content in apple canopy. The best inversion model for the nitrogen content of apple canopy was selected by establishing the regression model of univariate and multivariate factors. The nitrogen content of the canopy of apple orchard in the study area was inverted in space. The results showed that the 6 vegetation indices of RVI, NDVI, EVI, VARI, NPCI and NRI were better correlated with nitrogen content in the vegetation index based on GF-1 satellite multispectral imaging. The best inversion model of nitrogen content in apple canopy layer is the multivariate stepwise regression (MSR) model: Nc = 35.74– 41.978^*NPCI-10.78^*NDVI. The R^2 and RMSE of the model was 0.69 and 1.07. The spatial inversion of nitrogen content in apple orchard canopy was obtained. This study provided theoretical basis and technical support for large-area rapid monitoring of regional fruit tree nutrients.展开更多
基金the National Natural Science Foundation of China(41671346)National Key Research and Development Program of China (2017YFE0122500)+2 种基金the Taishan Scholar Assistance Program from Shandong Provincial GovernmentFunds of Shandong “Double Tops” Program(SYL2017XTTD02)Shandong major scientific and technological innovation project: Research demonstration and extension of orchard irrigation and fertilization in accurate management(2018CXGC0209).
文摘The apple orchard in Qixia City, Yantai City, Shandong Province was used as the research area. The nitrogen content inversion of apple canopy was studied by using the satellite remote sensing images of GF-1. On the basis of GF-1 satellite multispectral image preprocessing, vegetation index was extracted by band math. The nitrogen sensitive vegetation index of apple canopy was selected by correlation analysis of nitrogen content in apple canopy. The best inversion model for the nitrogen content of apple canopy was selected by establishing the regression model of univariate and multivariate factors. The nitrogen content of the canopy of apple orchard in the study area was inverted in space. The results showed that the 6 vegetation indices of RVI, NDVI, EVI, VARI, NPCI and NRI were better correlated with nitrogen content in the vegetation index based on GF-1 satellite multispectral imaging. The best inversion model of nitrogen content in apple canopy layer is the multivariate stepwise regression (MSR) model: Nc = 35.74– 41.978^*NPCI-10.78^*NDVI. The R^2 and RMSE of the model was 0.69 and 1.07. The spatial inversion of nitrogen content in apple orchard canopy was obtained. This study provided theoretical basis and technical support for large-area rapid monitoring of regional fruit tree nutrients.