The High-energy Fragment Separator(HFRS),which is currently under construction,is a leading international radioactive beam device.Multiple sets of position-sensitive twin time projection chamber(TPC)detectors are dist...The High-energy Fragment Separator(HFRS),which is currently under construction,is a leading international radioactive beam device.Multiple sets of position-sensitive twin time projection chamber(TPC)detectors are distributed on HFRS for particle identification and beam monitoring.The twin TPCs'readout electronics system operates in a trigger-less mode due to its high counting rate,leading to a challenge of handling large amounts of data.To address this problem,we introduced an event-building algorithm.This algorithm employs a hierarchical processing strategy to compress data during transmission and aggregation.In addition,it reconstructs twin TPCs'events online and stores only the reconstructed particle information,which significantly reduces the burden on data transmission and storage resources.Simulation studies demonstrated that the algorithm accurately matches twin TPCs'events and reduces more than 98%of the data volume at a counting rate of 500 kHz/channel.展开更多
BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive mod...BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive model for preoperative identification of HCC.METHODS A retrospective analysis of 884 patients who underwent liver resection and pathology evaluation from February 2021 to August 2023 was conducted at the Oriental Hepatobiliary Surgery Hospital.The patients were divided into the modeling group(n=720)and the control group(n=164).The study included conventional ultrasound,2D-SWE,and preoperative laboratory tests.Multiple logistic regression was used to identify independent predictive factors for RESULTS In the modeling group analysis,maximal elasticity(Emax)of tumors and their peripheries,platelet count,cirrhosis,and blood flow were independent risk indicators for malignancies.These factors yielded an area under the curve of 0.77(95%confidence interval:0.73-0.81)with 84%sensitivity and 61%specificity.The model demonstrated good calibration in both the construction and validation cohorts,as shown by the calibration graph and Hosmer-Lemeshow test(P=0.683 and P=0.658,respectively).Additionally,the mean elasticity(Emean)of the tumor periphery was identified as a risk factor for microvascular invasion(MVI)in malignant liver tumors(P=0.003).Patients receiving antiviral treatment differed significantly in platelet count(P=0.002),Emax of tumors(P=0.033),Emean of tumors(P=0.042),Emax at tumor periphery(P<0.001),and Emean at tumor periphery(P=0.003).CONCLUSION 2D-SWE’s hardness value serves as a valuable marker for enhancing the preoperative diagnosis of malignant liver lesions,correlating significantly with MVI and antiviral treatment efficacy.展开更多
Background:Calcific aortic valve stenosis(CAVS)is one of the most challenging heart diseases in clinical with rapidly increasing prevalence.However,study of the mecha-nism and treatment of CAVS is hampered by the lack...Background:Calcific aortic valve stenosis(CAVS)is one of the most challenging heart diseases in clinical with rapidly increasing prevalence.However,study of the mecha-nism and treatment of CAVS is hampered by the lack of suitable,robust and efficient models that develop hemodynamically significant stenosis and typical calcium deposi-tion.Here,we aim to establish a mouse model to mimic the development and features of CAVS.Methods:The model was established via aortic valve wire injury(AVWI)combined with vitamin D subcutaneous injected in wild type C57/BL6 mice.Serial transthoracic echocardiography was applied to evaluate aortic jet peak velocity and mean gradi-ent.Histopathological specimens were collected and examined in respect of valve thickening,calcium deposition,collagen accumulation,osteogenic differentiation and inflammation.Results:Serial transthoracic echocardiography revealed that aortic jet peak velocity and mean gradient increased from 7 days post model establishment in a time depend-ent manner and tended to be stable at 28 days.Compared with the sham group,sim-ple AVWI or the vitamin D group,the hybrid model group showed typical pathological features of CAVS,including hemodynamic alterations,increased aortic valve thicken-ing,calcium deposition,collagen accumulation at 28 days.In addition,osteogenic dif-ferentiation,fibrosis and inflammation,which play critical roles in the development of CAVS,were observed in the hybrid model.Conclusions:We established a novel mouse model of CAVS that could be induced efficiently,robustly and economically,and without genetic intervention.It provides a fast track to explore the underlying mechanisms of CAVS and to identify more effec-tive pharmacological targets.展开更多
The neon flying squid (Ommastrephes bartramii) is a short-lived opporttmistic species widely distributed in subtropical and temperate waters in the North Pacific Ocean. The life cycle of O. bartramii from planktonic...The neon flying squid (Ommastrephes bartramii) is a short-lived opporttmistic species widely distributed in subtropical and temperate waters in the North Pacific Ocean. The life cycle of O. bartramii from planktonic eggs to nektonic adults is closely linked to oceanographic conditions. The fluctuations in O. bartramii abundance and distribution tend to increase and widen continu- ously due to the heavy influences of ocean-climate events on various spatio-temporal scales. In this study, we reviewed the interac- tion between O. bartramii and oceanography variability in the North Pacific with respect to large-scale climatic-oceanic phenomena including E1 Nifio, La Nifia, Kuroshio, Oyashio and Pacific Decadal Oscillation (PDO), as well as regional environmental variables such as sea surface temperature (SST), sea surface height (SSH), sea surface salinity (SSS), chlorophyll-a (Chl-a) concentration, and plankton density. The population dynamics of O. bartramii is mediated mainly by meso- and large-scale climatic-oceanic events (e.g., Kuroshio and Oyashio Currents) rather than other local environmental conditions (e.g., SST and Chl-a concentration), because all of the oceanographic influences are imposed on the context of large-scale climate changes (e.g., PDO). An unstructured-grid finite- volume coastal ocean model coupled with an individual-based model is proposed to simulate relevant physical-biological oceano- graphic processes for identifying ocean-climate influence and predicting O. bartramii distribution and abundance in the North Pacific. Future research needs to be focused on improving the knowledge about early life history of O. bartramii and evaluating the relation- ship between marine physical environment and two separate passive drifting life stages of O. bartramii including free-floating eggs and planktonic paralarvae.展开更多
During 1995-2011, annual production of winter-spring cohort of Ommastrephes bartramii for Chinese squidjigging fishery has greatly fluctuated, which is closely related to the environmental conditions on the spawning a...During 1995-2011, annual production of winter-spring cohort of Ommastrephes bartramii for Chinese squidjigging fishery has greatly fluctuated, which is closely related to the environmental conditions on the spawning and fishing grounds. To better understand how squid recruitment and abundance were infuenced by ocean environmental conditions, biological and physical environmental variables including sea surface temperature (SST), SST anomaly (SSTA), chlorophyll a (Chl a) concentration and the Kuroshio Current were examined during years with the highest (1999), intermediate (2005), and lowest (2009) catches. Catch per unit effort (CPUE) of the squid-jigging vessels was used as an indicator of squid abundance. The results indicated that high SST and Chl a concentration on the spawning ground in 1999 resulted in favorable incubation and feeding conditions for squid recruitment. Whereas the suitable spawning zone (SSZ) in 2009 shifted southward and coincided with low SST and Chl a concentration, resulting in a reduction in the squid recruitment. The small difference of SSZ area in the three years suggested the SSZ provided limited influences on the variability in squid recruitment. Furthermore, high squid abundance in 1999 and 2005 was associated with warm SSTA on the fishing ground. While the cool SSTA on the fishing ground in 2009 contributed to adverse habitat for the squid, leading to extremely low abundance. It was inferred that strengthened intensity of the Kuroshio force generally yielded favorable environmental conditions for O. bartramii. Future research are suggested to focus on the fundamental research oil the early life stage of O. bartramii and mechanism of how the ocean-climate variability affects the squid abundance and spatial distribution by coupling physical model with squid biological process to explore transport path and abundance distribution.展开更多
The neon flying squid, Ommastrephes bartramii, is a species of economically important cephalopod in the Northwest Pacific Ocean. Its short lifespan increases the susceptibility of the distribution and abundance to the...The neon flying squid, Ommastrephes bartramii, is a species of economically important cephalopod in the Northwest Pacific Ocean. Its short lifespan increases the susceptibility of the distribution and abundance to the direct impact of the environmental conditions. Based on the generalized linear model(GLM) and generalized additive model(GAM), the commercial fishery data from the Chinese squid-jigging fleets during 1995 to 2011 were used to examine the interannual and seasonal variability in the abundance of O. bartramii, and to evaluate the influences of variables on the abundance(catch per unit effort, CPUE). The results from GLM suggested that year, month, latitude, sea surface temperature(SST), mixed layer depth(MLD), and the interaction term(SST×MLD) were significant factors. The optimal model based on GAM included all the six significant variables and could explain 42.43% of the variance in nominal CPUE. The importance of the six variables was ranked by decreasing magnitude: year, month, latitude, SST, MLD and SST×MLD. The squid was mainly distributed in the waters between 40?N and 44?N in the Northwest Pacific Ocean. The optimal ranges of SST and MLD were from 14 to 20℃ and from 10 to 30 m, respectively. The squid abundance greatly fluctuated from 1995 to 2011. The CPUE was low during 1995–2002 and high during 2003–2008. Furthermore, the squid abundance was typically high in August. The interannual and seasonal variabilities in the squid abundance were associated with the variations of marine environmental conditions and the life history characteristics of squid.展开更多
Neon flying squid, Ommastrephes bartramii, is a squid species of the North Pacific Ocean, which plays an important economical role in the international fishery. Logbook data for Chinese squid-jigging fishery over 2004...Neon flying squid, Ommastrephes bartramii, is a squid species of the North Pacific Ocean, which plays an important economical role in the international fishery. Logbook data for Chinese squid-jigging fishery over 2004–2011 were used to evaluate the relationship between the fishing grounds of the squid and the convergent frontal areas, which were defined by the contour lines of specific sea surface temperature(SST) and chlorophyll-a(Chl-a) concentration. Our results indicate that the SST in the range of 15 to 19℃ and the Chl-a concentration in the range of 0.1 to 0.4 mg m^(-3) are the favorable conditions for the aggregation of the squid. Additionally, we deduced that the SST at 17.5℃ and the Chl-a concentration at 0.25 mg m^(-3) are the optimal environmental conditions for the aggregation of O. bartramii. In August, the annual CPUE is positively correlated with the proportion of the fishing grounds with favorable SST and Chl-a concentration, as well as the combination of the two variables, implying that the abundance of the squid annually is largely depending on the presence of the favorable environmental conditions for fishery in August. Minor spatial difference between mean latitudinal location of the 17.5℃ SST and 0.25 mg m^(-3) Chl-a fronts can increase the CPUEs of O. bartramii. Furthermore, the monthly latitudinal gravity centers of the CPUE closely followed the mean latitudinal position of the contour lines of the 17.5℃ SST and the 0.25 mg m^(-3) Chl-a concentration. Our findings suggest the convergent oceanographic features(fronts) play significant roles in regulating the distribution and abundance of the western stock of the winter-spring cohort of O. bartramii, which can help people to improve their ability to discover the O. bartramii fishing grounds with higher productivity.展开更多
基金partially supported by the Strategic Priority Research Program of Chinese Academy of Science(No.XDB 34030000)the National Natural Science Foundation of China(Nos.11975293 and 12205348)。
文摘The High-energy Fragment Separator(HFRS),which is currently under construction,is a leading international radioactive beam device.Multiple sets of position-sensitive twin time projection chamber(TPC)detectors are distributed on HFRS for particle identification and beam monitoring.The twin TPCs'readout electronics system operates in a trigger-less mode due to its high counting rate,leading to a challenge of handling large amounts of data.To address this problem,we introduced an event-building algorithm.This algorithm employs a hierarchical processing strategy to compress data during transmission and aggregation.In addition,it reconstructs twin TPCs'events online and stores only the reconstructed particle information,which significantly reduces the burden on data transmission and storage resources.Simulation studies demonstrated that the algorithm accurately matches twin TPCs'events and reduces more than 98%of the data volume at a counting rate of 500 kHz/channel.
基金Supported by the National Natural Science Foundation of China Youth Training Project,No.2021GZR003and Medical-engineering Interdisciplinary Research Youth Training Project,No.2022YGJC001.
文摘BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive model for preoperative identification of HCC.METHODS A retrospective analysis of 884 patients who underwent liver resection and pathology evaluation from February 2021 to August 2023 was conducted at the Oriental Hepatobiliary Surgery Hospital.The patients were divided into the modeling group(n=720)and the control group(n=164).The study included conventional ultrasound,2D-SWE,and preoperative laboratory tests.Multiple logistic regression was used to identify independent predictive factors for RESULTS In the modeling group analysis,maximal elasticity(Emax)of tumors and their peripheries,platelet count,cirrhosis,and blood flow were independent risk indicators for malignancies.These factors yielded an area under the curve of 0.77(95%confidence interval:0.73-0.81)with 84%sensitivity and 61%specificity.The model demonstrated good calibration in both the construction and validation cohorts,as shown by the calibration graph and Hosmer-Lemeshow test(P=0.683 and P=0.658,respectively).Additionally,the mean elasticity(Emean)of the tumor periphery was identified as a risk factor for microvascular invasion(MVI)in malignant liver tumors(P=0.003).Patients receiving antiviral treatment differed significantly in platelet count(P=0.002),Emax of tumors(P=0.033),Emean of tumors(P=0.042),Emax at tumor periphery(P<0.001),and Emean at tumor periphery(P=0.003).CONCLUSION 2D-SWE’s hardness value serves as a valuable marker for enhancing the preoperative diagnosis of malignant liver lesions,correlating significantly with MVI and antiviral treatment efficacy.
基金National Natural Science Foundation of China,Grant/Award Number:81770252,82030014,82271606 and U22A20267Binjiang Institute of Zhejiang University,Grant/Award Number:ZY202205SMKY001Key Program of Major Science and Technology Projects in Zhejiang Province,Grant/Award Number:2021C03097 and 2022C03063。
文摘Background:Calcific aortic valve stenosis(CAVS)is one of the most challenging heart diseases in clinical with rapidly increasing prevalence.However,study of the mecha-nism and treatment of CAVS is hampered by the lack of suitable,robust and efficient models that develop hemodynamically significant stenosis and typical calcium deposi-tion.Here,we aim to establish a mouse model to mimic the development and features of CAVS.Methods:The model was established via aortic valve wire injury(AVWI)combined with vitamin D subcutaneous injected in wild type C57/BL6 mice.Serial transthoracic echocardiography was applied to evaluate aortic jet peak velocity and mean gradi-ent.Histopathological specimens were collected and examined in respect of valve thickening,calcium deposition,collagen accumulation,osteogenic differentiation and inflammation.Results:Serial transthoracic echocardiography revealed that aortic jet peak velocity and mean gradient increased from 7 days post model establishment in a time depend-ent manner and tended to be stable at 28 days.Compared with the sham group,sim-ple AVWI or the vitamin D group,the hybrid model group showed typical pathological features of CAVS,including hemodynamic alterations,increased aortic valve thicken-ing,calcium deposition,collagen accumulation at 28 days.In addition,osteogenic dif-ferentiation,fibrosis and inflammation,which play critical roles in the development of CAVS,were observed in the hybrid model.Conclusions:We established a novel mouse model of CAVS that could be induced efficiently,robustly and economically,and without genetic intervention.It provides a fast track to explore the underlying mechanisms of CAVS and to identify more effec-tive pharmacological targets.
基金financially supported by the National High-Tech R&D Program(863 Program)of China(2012AA092303)the Project of Shanghai Science and Technology Innovation(12231203900)+3 种基金the Industrialization Program of National Development and Reform Commission(2159999)the National Key Technologies R&D Program of China(2013BAD13B00)the Shanghai Universities First-Class Disciplines Project(Fisheries A)the Funding Program for Outstanding Dissertations in Shanghai Ocean University
文摘The neon flying squid (Ommastrephes bartramii) is a short-lived opporttmistic species widely distributed in subtropical and temperate waters in the North Pacific Ocean. The life cycle of O. bartramii from planktonic eggs to nektonic adults is closely linked to oceanographic conditions. The fluctuations in O. bartramii abundance and distribution tend to increase and widen continu- ously due to the heavy influences of ocean-climate events on various spatio-temporal scales. In this study, we reviewed the interac- tion between O. bartramii and oceanography variability in the North Pacific with respect to large-scale climatic-oceanic phenomena including E1 Nifio, La Nifia, Kuroshio, Oyashio and Pacific Decadal Oscillation (PDO), as well as regional environmental variables such as sea surface temperature (SST), sea surface height (SSH), sea surface salinity (SSS), chlorophyll-a (Chl-a) concentration, and plankton density. The population dynamics of O. bartramii is mediated mainly by meso- and large-scale climatic-oceanic events (e.g., Kuroshio and Oyashio Currents) rather than other local environmental conditions (e.g., SST and Chl-a concentration), because all of the oceanographic influences are imposed on the context of large-scale climate changes (e.g., PDO). An unstructured-grid finite- volume coastal ocean model coupled with an individual-based model is proposed to simulate relevant physical-biological oceano- graphic processes for identifying ocean-climate influence and predicting O. bartramii distribution and abundance in the North Pacific. Future research needs to be focused on improving the knowledge about early life history of O. bartramii and evaluating the relation- ship between marine physical environment and two separate passive drifting life stages of O. bartramii including free-floating eggs and planktonic paralarvae.
基金The National High-Tech R&D Program(863 Program)of China under contract No.2012AA092303the Project of Shanghai Science and Technology Innovation under contract No.12231203900+4 种基金the Industrialization Program of National Development and Reform Commission under contract No.2159999the National Key Technologies R&D Program of China under contract No.2013BAD13B00the Shanghai Universities First-Class Disciplines Project(Fisheries A)the Funding Program for Outstanding Dissertations in Shanghai Ocean Universitythe Shanghai Ocean University International Center for Marine Studies
文摘During 1995-2011, annual production of winter-spring cohort of Ommastrephes bartramii for Chinese squidjigging fishery has greatly fluctuated, which is closely related to the environmental conditions on the spawning and fishing grounds. To better understand how squid recruitment and abundance were infuenced by ocean environmental conditions, biological and physical environmental variables including sea surface temperature (SST), SST anomaly (SSTA), chlorophyll a (Chl a) concentration and the Kuroshio Current were examined during years with the highest (1999), intermediate (2005), and lowest (2009) catches. Catch per unit effort (CPUE) of the squid-jigging vessels was used as an indicator of squid abundance. The results indicated that high SST and Chl a concentration on the spawning ground in 1999 resulted in favorable incubation and feeding conditions for squid recruitment. Whereas the suitable spawning zone (SSZ) in 2009 shifted southward and coincided with low SST and Chl a concentration, resulting in a reduction in the squid recruitment. The small difference of SSZ area in the three years suggested the SSZ provided limited influences on the variability in squid recruitment. Furthermore, high squid abundance in 1999 and 2005 was associated with warm SSTA on the fishing ground. While the cool SSTA on the fishing ground in 2009 contributed to adverse habitat for the squid, leading to extremely low abundance. It was inferred that strengthened intensity of the Kuroshio force generally yielded favorable environmental conditions for O. bartramii. Future research are suggested to focus on the fundamental research oil the early life stage of O. bartramii and mechanism of how the ocean-climate variability affects the squid abundance and spatial distribution by coupling physical model with squid biological process to explore transport path and abundance distribution.
基金financially supported by the National HighTech R&D Program(863 Program)of China(2012AA 092303)the Project of Shanghai Science and Technology Innovation(12231203900)+3 种基金the Industrialization Program of National Development and Reform Commission(2159999)the National Key Technologies R&D Program of China(2013BAD13B00)the Shanghai Universities First-Class Disciplines Project(Fisheries A)the Funding Program for Outstanding Dissertations in Shanghai Ocean University
文摘The neon flying squid, Ommastrephes bartramii, is a species of economically important cephalopod in the Northwest Pacific Ocean. Its short lifespan increases the susceptibility of the distribution and abundance to the direct impact of the environmental conditions. Based on the generalized linear model(GLM) and generalized additive model(GAM), the commercial fishery data from the Chinese squid-jigging fleets during 1995 to 2011 were used to examine the interannual and seasonal variability in the abundance of O. bartramii, and to evaluate the influences of variables on the abundance(catch per unit effort, CPUE). The results from GLM suggested that year, month, latitude, sea surface temperature(SST), mixed layer depth(MLD), and the interaction term(SST×MLD) were significant factors. The optimal model based on GAM included all the six significant variables and could explain 42.43% of the variance in nominal CPUE. The importance of the six variables was ranked by decreasing magnitude: year, month, latitude, SST, MLD and SST×MLD. The squid was mainly distributed in the waters between 40?N and 44?N in the Northwest Pacific Ocean. The optimal ranges of SST and MLD were from 14 to 20℃ and from 10 to 30 m, respectively. The squid abundance greatly fluctuated from 1995 to 2011. The CPUE was low during 1995–2002 and high during 2003–2008. Furthermore, the squid abundance was typically high in August. The interannual and seasonal variabilities in the squid abundance were associated with the variations of marine environmental conditions and the life history characteristics of squid.
基金supported by the China Postdoctoral Science Foundation (No.2017M611612)the Doctoral Startup Scientific Research Foundation of Shanghai Ocean University (No.A2-0203-17-100313)+2 种基金the National Key Technologies R&D Program of China (No.2013BAD13B01)the Open Fund for Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources in Shanghai Ocean University (No.A1-0203-002009-5)the Shanghai Universities First-Class Disciplines Project (Fisheries A)
文摘Neon flying squid, Ommastrephes bartramii, is a squid species of the North Pacific Ocean, which plays an important economical role in the international fishery. Logbook data for Chinese squid-jigging fishery over 2004–2011 were used to evaluate the relationship between the fishing grounds of the squid and the convergent frontal areas, which were defined by the contour lines of specific sea surface temperature(SST) and chlorophyll-a(Chl-a) concentration. Our results indicate that the SST in the range of 15 to 19℃ and the Chl-a concentration in the range of 0.1 to 0.4 mg m^(-3) are the favorable conditions for the aggregation of the squid. Additionally, we deduced that the SST at 17.5℃ and the Chl-a concentration at 0.25 mg m^(-3) are the optimal environmental conditions for the aggregation of O. bartramii. In August, the annual CPUE is positively correlated with the proportion of the fishing grounds with favorable SST and Chl-a concentration, as well as the combination of the two variables, implying that the abundance of the squid annually is largely depending on the presence of the favorable environmental conditions for fishery in August. Minor spatial difference between mean latitudinal location of the 17.5℃ SST and 0.25 mg m^(-3) Chl-a fronts can increase the CPUEs of O. bartramii. Furthermore, the monthly latitudinal gravity centers of the CPUE closely followed the mean latitudinal position of the contour lines of the 17.5℃ SST and the 0.25 mg m^(-3) Chl-a concentration. Our findings suggest the convergent oceanographic features(fronts) play significant roles in regulating the distribution and abundance of the western stock of the winter-spring cohort of O. bartramii, which can help people to improve their ability to discover the O. bartramii fishing grounds with higher productivity.