期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于贝叶斯因子模型金融高频波动率预测研究 被引量:18
1
作者 罗嘉雯 陈浪南 《管理科学学报》 CSSCI CSCD 北大核心 2017年第8期13-26,共14页
构建了包含时变系数和动态方差的贝叶斯HAR潜在因子模型(DMA(DMS)-FAHAR),并对我国金融期货(主要是股指期货和国债期货)的高频已实现波动率进行预测.通过构建贝叶斯动态潜在因子模型提取包含波动率变量、跳跃变量和考虑杠杆效应的符号... 构建了包含时变系数和动态方差的贝叶斯HAR潜在因子模型(DMA(DMS)-FAHAR),并对我国金融期货(主要是股指期货和国债期货)的高频已实现波动率进行预测.通过构建贝叶斯动态潜在因子模型提取包含波动率变量、跳跃变量和考虑杠杆效应的符号跳跃变量等预测变量的重要信息.同时,在模型中加入了投机活动变量,以考察市场投机活动对中国金融期货市场波动率预测的影响.预测结果表明,时变贝叶斯潜在因子模型在所有参与比较的预测模型当中具有最优的短期、中期和长期预测效果.同时,具有时变参数和时变预测变量的贝叶斯HAR族模型在很大程度上提高了固定参数HAR族模型的预测能力.在股指期货和国债期货的预测模型中加入投机活动变量可以获得更好的预测效果. 展开更多
关键词 已实现波动率的预测 HAR模型 金融期货 时变性 潜在因子
下载PDF
多国股票市场的高频波动相关性研究 被引量:4
2
作者 罗嘉雯 陈浪南 《中国管理科学》 CSSCI CSCD 北大核心 2018年第2期116-125,共10页
本文通过建立包含马尔科夫机制转换结构的MS-MHAR-DCC模型,并选取世界上比较发达的国家和地区股票市场的高频日内交易数据为样本,对多个股票市场波动相关性进行研究。通过引入包含马尔科夫结构的外部随机矩阵,本文识别出金融市场波... 本文通过建立包含马尔科夫机制转换结构的MS-MHAR-DCC模型,并选取世界上比较发达的国家和地区股票市场的高频日内交易数据为样本,对多个股票市场波动相关性进行研究。通过引入包含马尔科夫结构的外部随机矩阵,本文识别出金融市场波动相关的截断时期,正态分布设定下相比在t分布设定下识别的截断时期更多且持续时间更长。在模型的截断时期内,多个股票市场的波动相关结构主要受到正向冲击,即在截断时期内的波动相关性大于平常状态的波动相关性。本文还发现,相同地域的股票市场间的动态波动相关性在大部分时期内表现为较强的正相关;美国股票市场和其余5个国家股票市场波动的动态相关性在大部分时期都表现为较强的正相关,表明美国作为全球巨头在世界金融市场波动的引导作用。 展开更多
关键词 波动相关性 MS-MHAR-DCC模型 高频数据 多个股票市场
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部