In ecological dynamic systems, the competition between species is a very universal phenomenon, which can be described by the well-known Volterra-Lotka model in a diffusion form. Noticing that the living space usually ...In ecological dynamic systems, the competition between species is a very universal phenomenon, which can be described by the well-known Volterra-Lotka model in a diffusion form. Noticing that the living space usually changes in a seasonal manner and the population development of the species may also undergo time-delay im- pact, a developed form of this model is investigated in this article. The main approaches employed here are the upper-lower solution method and the energy-estimate technique. The results show that whether the species may sustain survival or not depends on the relations among the birth rate, the death rate, the competition rate, the diffusivity and the time delay. For the survival case, the population evolutions of the two species may appear asymptotic periodicity with distinct upper bound and this bound depends heavily on the time delay. These results can be also checked by the intuitionistic numerical simulations.展开更多
基金Supported by the China Postdoctoral Science Foundation (20070411111) the K. C. Wong Education Foundation, Hong Kong the Fund of Shandong Province for the Excellent Postdoctors (200603056).
文摘In ecological dynamic systems, the competition between species is a very universal phenomenon, which can be described by the well-known Volterra-Lotka model in a diffusion form. Noticing that the living space usually changes in a seasonal manner and the population development of the species may also undergo time-delay im- pact, a developed form of this model is investigated in this article. The main approaches employed here are the upper-lower solution method and the energy-estimate technique. The results show that whether the species may sustain survival or not depends on the relations among the birth rate, the death rate, the competition rate, the diffusivity and the time delay. For the survival case, the population evolutions of the two species may appear asymptotic periodicity with distinct upper bound and this bound depends heavily on the time delay. These results can be also checked by the intuitionistic numerical simulations.