期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
关于非线性Schrdinger方程混合问题解的爆破 被引量:4
1
作者 张健 《应用数学》 CSCD 北大核心 1989年第4期20-26,共7页
本文通过引入爆破因子k(u,ū),讨论了非线性schrūdinger方程u_t+iΔu=f(u,▽u)的混合问题解的爆破性质。
关键词 非线性 薛定锷方程 混合问题
下载PDF
组合方程的孤立波解 被引量:1
2
作者 杨海霞 赵敬宜 《纺织高校基础科学学报》 CAS 2013年第4期432-435,共4页
讨论了一个由modified Camassa-Holm方程(简mCH方程)和Camassa-Holm方程(简称CH方程)组合的新方程的孤立波解的问题.通过运用sine-cosine法和tanh法分别求出了此组合方程的孤立波解.分析发现,这2种方法同样适用于求解其他一些演化方程... 讨论了一个由modified Camassa-Holm方程(简mCH方程)和Camassa-Holm方程(简称CH方程)组合的新方程的孤立波解的问题.通过运用sine-cosine法和tanh法分别求出了此组合方程的孤立波解.分析发现,这2种方法同样适用于求解其他一些演化方程的孤立波解. 展开更多
关键词 Camassa—Holm方程 MODIFIED Camassa—Holm方程 sine-cosine法 tanh法
下载PDF
ESTIMATION FOR THE ASYMPTOTIC BEHAVIOR OF THE DELAYED COMPETITION MODEL
3
作者 Li Huifeng Wang Jinliang 《Journal of Partial Differential Equations》 2008年第4期289-302,共14页
In ecological dynamic systems, the competition between species is a very universal phenomenon, which can be described by the well-known Volterra-Lotka model in a diffusion form. Noticing that the living space usually ... In ecological dynamic systems, the competition between species is a very universal phenomenon, which can be described by the well-known Volterra-Lotka model in a diffusion form. Noticing that the living space usually changes in a seasonal manner and the population development of the species may also undergo time-delay im- pact, a developed form of this model is investigated in this article. The main approaches employed here are the upper-lower solution method and the energy-estimate technique. The results show that whether the species may sustain survival or not depends on the relations among the birth rate, the death rate, the competition rate, the diffusivity and the time delay. For the survival case, the population evolutions of the two species may appear asymptotic periodicity with distinct upper bound and this bound depends heavily on the time delay. These results can be also checked by the intuitionistic numerical simulations. 展开更多
关键词 Volterra-Lotka DIFFUSION PERIODIC ASYMPTOTIC time delay.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部