The motion of a test particle within the context of the restricted four-body problem(R4BP)driven by a new kind of potential,called the generalized Manev potential,with perturbations in the Coriolis and centrifugal for...The motion of a test particle within the context of the restricted four-body problem(R4BP)driven by a new kind of potential,called the generalized Manev potential,with perturbations in the Coriolis and centrifugal forces is considered in this study.The system possesses eight libration points which were distributed on its plane of motion in different manner from those of the usual Newtonian potential.Unlike the case of the perturbed R4BP under Newtonian potential,where two of these librations are stable,all of them are unstable in linear sense under Manev potential.We found that a gradual perturbation in the centrifugal force causes the trajectories of motion to drift inward but the Coriolis force was proven to have no effect on the location of the libration points of the system.Using first order Lyapunov characteristic exponents,the dynamical behavior of the system is found irregular.We experimented with a high velocity stellar system(82 G.Eridani)to establish the applicability of the model in astrophysics.展开更多
An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency...An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency of laser interference fringes of an absolute gravimeter gradually increases with the fall time. Data are sparse in the early stage and dense in the late stage. The fitting accuracy of gravitational acceleration will be affected by least-squares fitting according to the fixed number of zero-crossing groups. In response to this problem, a method based on Fourier series fitting is proposed in this paper to calculate the zero-crossing point. The whole falling process is divided into five frequency bands using the Hilbert transformation. The multiplicative auto-regressive moving average model is then trained according to the number of optimal zero-crossing groups obtained by the honey badger algorithm. Through this model, the number of optimal zero-crossing groups determined in each segment is predicted by the least-squares fitting. The mean value of gravitational acceleration in each segment is then obtained. The method can improve the accuracy of gravitational measurement by more than 25% compared to the fixed zero-crossing groups method. It provides a new way to improve the measuring accuracy of an absolute gravimeter.展开更多
文摘The motion of a test particle within the context of the restricted four-body problem(R4BP)driven by a new kind of potential,called the generalized Manev potential,with perturbations in the Coriolis and centrifugal forces is considered in this study.The system possesses eight libration points which were distributed on its plane of motion in different manner from those of the usual Newtonian potential.Unlike the case of the perturbed R4BP under Newtonian potential,where two of these librations are stable,all of them are unstable in linear sense under Manev potential.We found that a gradual perturbation in the centrifugal force causes the trajectories of motion to drift inward but the Coriolis force was proven to have no effect on the location of the libration points of the system.Using first order Lyapunov characteristic exponents,the dynamical behavior of the system is found irregular.We experimented with a high velocity stellar system(82 G.Eridani)to establish the applicability of the model in astrophysics.
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFF0607504)。
文摘An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency of laser interference fringes of an absolute gravimeter gradually increases with the fall time. Data are sparse in the early stage and dense in the late stage. The fitting accuracy of gravitational acceleration will be affected by least-squares fitting according to the fixed number of zero-crossing groups. In response to this problem, a method based on Fourier series fitting is proposed in this paper to calculate the zero-crossing point. The whole falling process is divided into five frequency bands using the Hilbert transformation. The multiplicative auto-regressive moving average model is then trained according to the number of optimal zero-crossing groups obtained by the honey badger algorithm. Through this model, the number of optimal zero-crossing groups determined in each segment is predicted by the least-squares fitting. The mean value of gravitational acceleration in each segment is then obtained. The method can improve the accuracy of gravitational measurement by more than 25% compared to the fixed zero-crossing groups method. It provides a new way to improve the measuring accuracy of an absolute gravimeter.