The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary s...The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary shock and its propagation within a confined domain are studied both theoretically and numerically in this research.Under the assumption of strong shock,the scaling law governing propagation of the main shock is proposed.The dimensionless frequency of reflected shock propagation is associated with the confined distance.The numerical simulation for the circular explosion problem in a confined domain is performed for validation.Under the influence of confinement,the principal shock wave systematically undergoes reflection within the domain until it weakens,leading to the non-monotonic attenuation of kinetic energy in the explosion fireball and periodic oscillations of the fireball volume with a certain frequency.The simulation results indicate that the frequency of kinetic energy attenuation and the volume oscillation of the explosive fireball align consistently with the scaling law.展开更多
基金Projects(2020YFA0710903-C,2020YFA0710904-02)supported by the National Key R&D Program of ChinaProjects(52078199,52322215,52388102,U2368213)supported by the National Natural Science Foundation of China+1 种基金Project(P2021J036)supported by the China National Railway Group LimitedProject(2020QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,China。
基金Project(2022RC3040)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(51975591)supported by the National Natural Science Foundation of China+1 种基金Project(K2021J041)supported by the Technology Research and Development Program of China RailwayProject(2023ZZTS0426)supported by the Fundamental Research Funds for the Central Universities,China。
基金the National Natural Science Foundation of China(Nos.11988102,92052201,11825204,12032016,12372220,and 12372219)。
文摘The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary shock and its propagation within a confined domain are studied both theoretically and numerically in this research.Under the assumption of strong shock,the scaling law governing propagation of the main shock is proposed.The dimensionless frequency of reflected shock propagation is associated with the confined distance.The numerical simulation for the circular explosion problem in a confined domain is performed for validation.Under the influence of confinement,the principal shock wave systematically undergoes reflection within the domain until it weakens,leading to the non-monotonic attenuation of kinetic energy in the explosion fireball and periodic oscillations of the fireball volume with a certain frequency.The simulation results indicate that the frequency of kinetic energy attenuation and the volume oscillation of the explosive fireball align consistently with the scaling law.