针对声学边界元法中解的非唯一性和奇异积分问题,基于组合亥姆霍兹积分方程公式(combined helmholtz integral equation formulation,CHIEF)法思想,将常规边界元方程和等效源方程进行联立,并利用两者方程系数矩阵间的耦合等价关系,间接...针对声学边界元法中解的非唯一性和奇异积分问题,基于组合亥姆霍兹积分方程公式(combined helmholtz integral equation formulation,CHIEF)法思想,将常规边界元方程和等效源方程进行联立,并利用两者方程系数矩阵间的耦合等价关系,间接替换计算常规边界元法中的奇异系数矩阵,进而提出一种具有全频域唯一解、高计算精度和高稳定性的耦合CHIEF法。该方法将等效源方程作为补充方程,不仅解决了传统CHIEF法内点补充方程失效的问题,而且矩阵的间接替换计算避免了直接计算奇异积分,显著提高了计算效率和精度。通过声辐射和声散射的典型算例对比了所提方法、常规边界元法、常规Burton-Miller法和等效源法的计算效果。结果表明,所提方法不仅在全波数域内均能获得唯一解,且其计算精度和效率均优于常规边界元法和常规Burton-Miller方法,其系数矩阵条件数远低于等效源法。展开更多
文摘针对声学边界元法中解的非唯一性和奇异积分问题,基于组合亥姆霍兹积分方程公式(combined helmholtz integral equation formulation,CHIEF)法思想,将常规边界元方程和等效源方程进行联立,并利用两者方程系数矩阵间的耦合等价关系,间接替换计算常规边界元法中的奇异系数矩阵,进而提出一种具有全频域唯一解、高计算精度和高稳定性的耦合CHIEF法。该方法将等效源方程作为补充方程,不仅解决了传统CHIEF法内点补充方程失效的问题,而且矩阵的间接替换计算避免了直接计算奇异积分,显著提高了计算效率和精度。通过声辐射和声散射的典型算例对比了所提方法、常规边界元法、常规Burton-Miller法和等效源法的计算效果。结果表明,所提方法不仅在全波数域内均能获得唯一解,且其计算精度和效率均优于常规边界元法和常规Burton-Miller方法,其系数矩阵条件数远低于等效源法。