期刊文献+
共找到1,558篇文章
< 1 2 78 >
每页显示 20 50 100
玻纤负载α-Fe_(2)O_(3)/CuFe_(2)O_(4)异质结薄膜的制备 及其催化性能
1
作者 赵永男 郑翔云 +1 位作者 孙红玉 高海燕 《天津工业大学学报》 CAS 北大核心 2024年第4期19-23,共5页
为了克服传统芬顿催化剂的降解速率慢、pH适用范围窄、难回收等缺点,采用浸涂溶胶-凝胶法制备了玻璃纤维负载的α-Fe_(2)O_(3)/CuFe_(2)O_(4)异质结薄膜(FCGF),对其结构、形态和化学组成进行表征,并将其用于亚甲基蓝的光芬顿催化降解,... 为了克服传统芬顿催化剂的降解速率慢、pH适用范围窄、难回收等缺点,采用浸涂溶胶-凝胶法制备了玻璃纤维负载的α-Fe_(2)O_(3)/CuFe_(2)O_(4)异质结薄膜(FCGF),对其结构、形态和化学组成进行表征,并将其用于亚甲基蓝的光芬顿催化降解,考察其催化活性、pH值适用性和重复使用稳定性。结果表明:CuFe2O4颗粒生长在α-Fe_(2)O_(3)颗粒表面,形成α-Fe_(2)O_(3)/CuFe_(2)O_(4)异质结;在模拟太阳光辐射条件下,加入2 g FCGF和20 mmol/L的H_(2)O_(2),50 mL质量浓度为30 mg/L的MB溶液在40 min后降解率达到97%,而在相同条件下加入α-Fe_(2)O_(3)与CuFe_(2)O_(4)降解率分别为20%和30%,其催化活性的增强可归因于异质结光催化剂产生的光诱导电位差驱动的光生载流子的有效分离;同时,FCGF在宽pH范围显示出较高活性,pH=10时,MB溶液40 min后降解效率仍达到63%;FCGF具有良好的稳定性,5次循环后其催化性能没有衰减,反应40 min后MB降解率仍可达97%。 展开更多
关键词 α-Fe_(2)O_(3)/CuFe_(2)O_(4) 玻璃纤维支架 光芬顿反应 MB降解
下载PDF
电极/碱性聚电解质界面的微分电容曲线和零电荷电位测定
2
作者 刘晨希 邹泽萍 +11 位作者 胡梅雪 丁宇 谷宇 刘帅 南文静 马溢昌 陈招斌 詹东平 张秋根 庄林 颜佳伟 毛秉伟 《电化学(中英文)》 CAS 北大核心 2024年第3期24-33,共10页
碱性聚合物电解质作为现代碱性氢氧燃料电池的核心组成部分,其单离子导体的特性使得“电极/碱性聚电解质”界面的性质与“电极/溶液”界面有所不同。本文使用微电极,运用循环伏安、电化学交流阻抗以及浸入法等方法,测定了电极/碱性聚电... 碱性聚合物电解质作为现代碱性氢氧燃料电池的核心组成部分,其单离子导体的特性使得“电极/碱性聚电解质”界面的性质与“电极/溶液”界面有所不同。本文使用微电极,运用循环伏安、电化学交流阻抗以及浸入法等方法,测定了电极/碱性聚电解质界面的微分电容曲线和零电荷电位。该界面的微分电容曲线呈“U”状,且存在局域极小值,该极小值所对应的电位与浸入法测得的零电荷电位数值一致。单离子导体的特性使得“电极/碱性聚电解质”界面在零电荷电位两侧表现出不同的电化学极化行为。 展开更多
关键词 碱性物电解质 双电层 微电极 微分电容曲线 零电荷电位
下载PDF
锂离子电池用低温电解液添加剂的研究进展 被引量:1
3
作者 晏然 《江西化工》 CAS 2024年第3期5-9,15,共6页
锂离子电池是一种二次电池(充电电池),主要工作机制是依靠锂离子在正极和负极之间的移动。低温电解液的改性是优化锂离子电池低温性能的关键,其中,添加剂的加入可有效改善电解液的离子电导率,降低电极/电解质界面的阻抗。本文重点围绕... 锂离子电池是一种二次电池(充电电池),主要工作机制是依靠锂离子在正极和负极之间的移动。低温电解液的改性是优化锂离子电池低温性能的关键,其中,添加剂的加入可有效改善电解液的离子电导率,降低电极/电解质界面的阻抗。本文重点围绕近年来锂离子电池用低温电解液添加剂的研究情况进行综述,包括含氟试剂、亚硫酸酯类、碳酸酯类、含硅聚合物、醚类和锂盐等,简述添加剂在低温环境中对电解液的离子电导率和电极/电解质界面阻抗的作用机制,以及对电池低温性能的影响。 展开更多
关键词 锂离子电池 低温电解液 添加剂 Li^(+)电导率 界面电荷转移动力学
下载PDF
Highly Efficient Aligned Ion‑Conducting Network and Interface Chemistries for Depolarized All‑Solid‑State Lithium Metal Batteries 被引量:2
4
作者 Yongbiao Mu Shixiang Yu +12 位作者 Yuzhu Chen Youqi Chu Buke Wu Qing Zhang Binbin Guo Lingfeng Zou Ruijie Zhang Fenghua Yu Meisheng Han Meng Lin Jinglei Yang Jiaming Bai Lin Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期102-119,共18页
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l... Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature. 展开更多
关键词 All-solid-state lithium metal batteries Composite solid electrolyte 3D printing Areal capacity Interfacial degradation
下载PDF
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries 被引量:2
5
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 Lithium metal batteries High-voltage layered oxides Fluorinated ether-based electrolytes Solid electrolyte interphase Cathode electrolyte interphase
下载PDF
Rationally designing electrolyte additives for highly improving cyclability of LiNi_(0.5)Mn_(1.5)O_(4)/Graphite cells 被引量:1
6
作者 Zhiyong Xia Kuan Zhou +8 位作者 Xiaoyan Lin Zhangyating Xie Qiurong Chen Xiaoqing Li Jie Cai Suli Li Hai Wang Mengqing Xu Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期266-275,共10页
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo... High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries. 展开更多
关键词 Electrolyte additive Design and synthesis CYCLABILITY High voltage batteries Cathode and anode interphases
下载PDF
Asymmetric Electrolytes Design for Aqueous Multivalent Metal Ion Batteries 被引量:1
7
作者 Xiaochen Yang Xinyu Wang +2 位作者 Yue Xiang Longtao Ma Wei Huang 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期227-253,共27页
With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diame... With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics. 展开更多
关键词 Asymmetric electrolyte Aqueous multivalent metal ion batteries Electrochemical stability windows Electrolyte interface
下载PDF
Mechanical reliable,NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life 被引量:1
8
作者 Tengjia Gao Na Li +4 位作者 Yang Yang Jing Li Peng Ji Yunlong Zhou Jianxiong Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期63-73,共11页
Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to dras... Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span. 展开更多
关键词 Flexible zinc ion supercapacitor Hydrogel electrolyte Self-healing Anti-freezing
下载PDF
超级电容器用低温电解液研究进展
9
作者 张若萱 时志强 《山东化工》 CAS 2024年第19期144-146,149,共4页
电解液作为超级电容器的重要组成部分,是提高超级电容器低温性能的关键。常规电解液高冰点以及低温下离子电导率的不足,极大地限制了超级电容器在低温环境下的应用。降低电解液高冰点的同时确保具有高离子电导率、低黏度和优异化学稳定... 电解液作为超级电容器的重要组成部分,是提高超级电容器低温性能的关键。常规电解液高冰点以及低温下离子电导率的不足,极大地限制了超级电容器在低温环境下的应用。降低电解液高冰点的同时确保具有高离子电导率、低黏度和优异化学稳定性等关键特性是目前的研究重点。从水系和非水电解液(包括有机电解液和离子液体)的角度出发,总结了以往为解决相关问题所采取的策略和方法,并对超级电容器低温电解液的发展方向提出展望。 展开更多
关键词 超级电容器 低温 水系电解液 有机溶剂 离子液体
下载PDF
Janus Quasi‑Solid Electrolyte Membranes with Asymmetric Porous Structure for High‑Performance Lithium‑Metal Batteries
10
作者 Zerui Chen Wei Zhao +4 位作者 Qian Liu Yifei Xu Qinghe Wang Jinmin Lin Hao Bin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期221-232,共12页
Quasi-solid electrolytes(QSEs)based on nanoporous materials are promising candidates to construct high-performance Limetal batteries(LMBs).However,simultaneously boosting the ionic conductivity(σ)and lithium-ion tran... Quasi-solid electrolytes(QSEs)based on nanoporous materials are promising candidates to construct high-performance Limetal batteries(LMBs).However,simultaneously boosting the ionic conductivity(σ)and lithium-ion transference number(t^(+)) of liquid electrolyte confined in porous matrix remains challenging.Herein,we report a novel Janus MOFLi/MSLi QSEs with asymmetric porous structure to inherit the benefits of both mesoporous and microporous hosts.This Janus QSE composed of mesoporous silica and microporous MOF exhibits a neat Li^(+) conductivity of 1.5.10^(–4)S cm^(−1) with t^(+) of 0.71.A partially de-solvated structure and preference distribution of Li^(+)near the Lewis base O atoms were depicted by MD simulations.Meanwhile,the nanoporous structure enabled efficient ion flux regulation,promoting the homogenous deposition of Li^(+).When incorporated in Li||Cu cells,the MOFLi/MSLi QSEs demonstrated a high Coulombic efficiency of 98.1%,surpassing that of liquid electrolytes(96.3%).Additionally,NCM 622||Li batteries equipped with MOFLi/MSLi QSEs exhibited promising rate performance and could operate stably for over 200 cycles at 1 C.These results highlight the potential of Janus MOFLi/MSLi QSEs as promising candidates for next-generation LMBs. 展开更多
关键词 Metal-organic frameworks Mesoporous silicas Quasi-solid electrolytes Janus structure Lithium-metal battery
下载PDF
Progress in the application of polymer fibers in solid electrolytes for lithium metal batteries
11
作者 Junbao Kang Nanping Deng +1 位作者 Bowen Cheng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期26-42,共17页
Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed... Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed solid-state electrolytes(SSEs)are still difficult to meet the practical application requirements of SSLMBs.In this review,based on the analysis of main problems and challenges faced by the development of SSEs,the ingenious application and latest progresses including specific suggestions of various polymer fibers and their membrane products in solving these issues are emphatically reviewed.Firstly,the inherent defects of inorganic and organic electrolytes are pointed out.Then,the application strategies of polymer fibers/fiber membranes in strengthening strength,reducing thickness,enhancing thermal stability,increasing the film formability,improving ion conductivity and optimizing interface stability are discussed in detail from two aspects of improving physical structure properties and electrochemical performances.Finally,the researches and development trends of the intelligent applications of high-performance polymer fibers in SSEs is prospected.This review intends to provide timely and important guidance for the design and development of polymer fiber composite SSEs for SSLMBs. 展开更多
关键词 Composite solide lectrolytes Polymer fibers Solid-state lithium metal batteries Solid-stateel ectrolytes Nanofiber membranes
下载PDF
Coupling of Adhesion and Anti‑Freezing Properties in Hydrogel Electrolytes for Low‑Temperature Aqueous‑Based Hybrid Capacitors
12
作者 Jingya Nan Yue Sun +9 位作者 Fusheng Yang Yijing Zhang Yuxi Li Zihao Wang Chuchu Wang Dingkun Wang Fuxiang Chu Chunpeng Wang Tianyu Zhu Jianchun Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期15-31,共17页
Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety,mechanical and thermal stability and easy-to-direct stacking.Hydrogel electrolytes are appea... Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety,mechanical and thermal stability and easy-to-direct stacking.Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness,high conductivity and intrinsic flexibility.However,the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors.Here,we report a class of hydrogel electrolytes that couple high interfacial adhesion and anti-freezing performance.The synergy of tough hydrogel matrix and chemical anchorage enables a well-adhered interface between hydrogel electrolyte and electrode.Meanwhile,the cooperative solvation of ZnCl2 and LiCl hybrid salts renders the hydrogel electrolyte high ionic conductivity and mechanical elasticity simultaneously at low temperatures.More significantly,the Zn||carbon nanotubes hybrid capacitor based on this hydrogel electrolyte exhibits low-temperature capacitive performance,delivering high-energy density of 39 Wh kg^(-1)at-60°C with capacity retention of 98.7%over 10,000 cycles.With the benefits of the well-adhered electrolyte/electrode interface and the anti-freezing hydrogel electrolyte,the Zn/Li hybrid capacitor is able to accommodate dynamic deformations and function well under 1000 tension cycles even at-60°C.This work provides a powerful strategy for enabling stable operation of low-temperature zinc-ion capacitors. 展开更多
关键词 Interfacial adhesion ANTI-FREEZING Hydrogel electrolytes Low-temperature hybrid capacitors Dynamic deformati
下载PDF
Rational manipulation of electrolyte to induce homogeneous SEI on hard carbon anode for sodium-ion battery
13
作者 Lu Liu Lingling Xiao +4 位作者 Zhi Sun Shahid Bashir Ramesh Kasi Yonghong Gu Ramesh Subramaniam 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期414-429,共16页
Sodium-ion batteries (SIBs) have great potential to be the next major energy storage devices due to their obvious advantages and developing advanced electrodes and electrolytes is urgently necessary to promote its fut... Sodium-ion batteries (SIBs) have great potential to be the next major energy storage devices due to their obvious advantages and developing advanced electrodes and electrolytes is urgently necessary to promote its future industrialization.However,hard carbon as a state-of-the-art anode of SIBs still suffers from the low initial Coulomb efficiency and unsatisfactory rate capability,which could be improved by forming desirable solid electrolyte interphases (SEI) to some extent.Indeed,the chemistry and morphology of these interfacial layers are fundamental parameters affecting the overall battery operation,and optimizing the electrolyte to dictate the quality of SEI on hard carbon is a key strategy.Hence,this review summarizes the recent research on SEI design by electrolyte manipulation from solvents,salts,and additives.It also presents some potential mechanisms of SEI formation in various electrolyte systems.Besides,the current advanced characterization techniques for electrolyte and SEI structure analyses have been comprehensively discussed.Lastly,current challenges and future perspectives of SEI formation on hard carbon anode for SIBs are provided from the viewpoints of its compositions,evolution processes,structures,and characterization techniques,which will promote SEI efficient manipulation and improve the performance of hard carbon,and further contribute to the development of SIBs. 展开更多
关键词 SEI Electrolyte optimization Hard carbon Electrochemical performance Sodium-ion batteries
下载PDF
Revealing the influence of in-situ formed LiCl on garnet/Li interface for dendrite-free solid-state batteries
14
作者 Seoyoon Shin Jinuk Lee +1 位作者 Tae Ho Shin Seokhee Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期394-403,共10页
Inadequate interfacial contact between lithium and solid-state electrolytes(SSEs)leads to elevated impedance and the growth of lithium dendrites,presenting significant obstacles to the practical viability of solid-sta... Inadequate interfacial contact between lithium and solid-state electrolytes(SSEs)leads to elevated impedance and the growth of lithium dendrites,presenting significant obstacles to the practical viability of solid-state batteries(SSBs).To ameliorate interfacial contact,optimizing the surface treatment of SSEs has been widely adopted.However,the formation of LiCl through acid treatment,an equally crucial factor impacting SSB performance,has received limited attention,leaving its underlying mechanism unclear.Our study aims to shed light on SSE characteristics following LiCl formation and the removal of Li_(2)CO_(3) through acid treatment.We seek to establish quantifiable links between SSE surface structure and SSB performance,focusing on interfacial resistance,current distribution,critical current density(CCD),and lithium deposition.The formation of LiCl,occurring as Li_(2)CO_(3) is removed through acid treatment,effectively mitigates lithium dendrite formation on SSE surfaces.This action inhibits electron injection and reduces the diffusion rate of Li atoms.Simultaneously,acid treatment transforms the SSE surface into a lithiophilic state by eliminating surface Li_(2)CO_(3).Consequently,the interfacial resistance between lithium and SSEs substantially decreases from 487.67 to 35.99Ωcm^(2) at 25°C.This leads to a notably high CCD of 1.3 mA cm^(-2) and a significantly extended cycle life of 1,000 h.Furthermore,in full SSBs incorporating LiCoO_(2)cathodes and acid-treated garnet SSEs,we observe exceptional cyclability and rate capability.Our findings highlight that acid treatment not only establishes a fundamental relationship between SSE surfaces and battery performance but also offers an effective strategy for addressing interfacial challenges in SSBs. 展开更多
关键词 Solid-statebatteries Acidtreatment Interfacial stability LICL Surface modification
下载PDF
PDOL-Based Solid Electrolyte Toward Practical Application:Opportunities and Challenges
15
作者 Hua Yang Maoxiang Jing +3 位作者 Li Wang Hong Xu Xiaohong Yan Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期109-141,共33页
Polymer solid-state lithium batteries(SSLB)are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety.Ion conductivity,interface stability and battery asse... Polymer solid-state lithium batteries(SSLB)are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety.Ion conductivity,interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB.As the main component of SSLB,poly(1,3-dioxolane)(PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid elec-trolyte,for their high ion conductivity at room temperature,good battery elec-trochemical performances,and simple assembly process.This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB.The focuses include exploring the polymerization mechanism of DOL,the performance of PDOL composite electrolytes,and the application of PDOL.Furthermore,we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB.The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries. 展开更多
关键词 Poly(1 3-dioxolane) Solid electrolyte Polymerization mechanism Composite electrolyte Practical application
下载PDF
Revealing the specific role of sulfide and nano-alumina in composite solid-state electrolytes for performance-reinforced ether-nitrile copolymers
16
作者 Haoyang Yuan Changhao Tian +3 位作者 Mengyuan Song Wenjun Lin Tao Huang Aishui Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期628-636,共9页
Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combin... Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combinations between polymers and fillers is vital,but blind attempts are often made due to a lack of understanding of the mechanisms involved in the interaction between polymers and fillers.Herein,we employ in-situ polymerization to prepare a polymer based on an ether-nitrile copolymer with high cathode stability as the foundation and discuss the performance enhancement mechanisms of argyrodite and nano-alumina.With 1%content of sulfide interacting with the polymer at the two-phase interface,the local enhancement of lithium-ion migration capability can be achieved,avoiding the reduction in capacity due to the low ion conductivity of the passivation layer during cycling.The capacity retention after 50cycles at 0.5 C increases from 83.5%to 94.4%.Nano-alumina,through anchoring the anions and interface inhibition functions,eventually poses an initial discharge capacity of 136.8 m A h g^(-1)at 0.5 C and extends the cycling time to 1000 h without short-circuiting in lithium metal batteries.Through the combined action of dual fillers on the composite solid-state electrolyte,promising insights are provided for future material design. 展开更多
关键词 Composite solid-state electrolytes Lithium metal anode Dual fillers Interfacial ionic conduction Inert nano-alumina
下载PDF
A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur Batteries
17
作者 Bingxin Qi Xinyue Hong +4 位作者 Ying Jiang Jing Shi Mingrui Zhang Wen Yan Chao Lai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期219-252,共34页
The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high in... The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high interfacial impedances existing between the SSEs and the electrodes(both lithium anodes and sulfur cathodes)hinder the charge transfer and intensify the uneven deposition of lithium,which ultimately result in insufficient capacity utilization and poor cycling stability.Hence,the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries.In this review,we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes,and summarize recent progresses of their applications in solidstate Li–S batteries.Moreover,the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well.We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries. 展开更多
关键词 Solid-state lithium–sulfur batteries Solid-state electrolytes Electrode/electrolyte interface Interfacial engineering Enhancing interfacial contact
下载PDF
大连化物所设计开发出高稳定性钠离子电池用含氟阴离子组分的醚类电解液体系
18
《膜科学与技术》 CAS CSCD 北大核心 2024年第1期44-44,共1页
近日,大连化物所储能技术研究部(DNL17)李先锋研究员、郑琼研究员团队和中国科学院苏州纳米技术与纳米仿生研究所蔺洪振研究员合作,在钠离子电池电解液研究方面取得新进展.钠离子电池具有资源丰富、成本低廉、性价比高等优势,在中低速... 近日,大连化物所储能技术研究部(DNL17)李先锋研究员、郑琼研究员团队和中国科学院苏州纳米技术与纳米仿生研究所蔺洪振研究员合作,在钠离子电池电解液研究方面取得新进展.钠离子电池具有资源丰富、成本低廉、性价比高等优势,在中低速电动车和大规模储能等领域应用前景广阔.醚类电解液因其低熔点和高电导性等优势成为钠离子电池相适配的优选电解液体系之一. 展开更多
关键词 钠离子电池 大连化物所 中国科学院 电解液 纳米技术 储能技术 高稳定性 醚类
下载PDF
An intrinsically self-healing and anti-freezing molecular chains induced polyacrylamide-based hydrogel electrolytes for zinc manganese dioxide batteries
19
作者 Haiyang Liao Wenzhao Zhong +8 位作者 Chen Li Jieling Han Xiao Sun Xinhui Xia Ting Li Abolhassan Noori Mir F.Mousavi Xin Liu Yongqi Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期565-578,I0013,共15页
The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self... The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions.Herein,we design a new hydrogel electrolyte(AF/SH-Hydrogel)with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules,dynamic chemical bonding(disulfide bond),and supramolecular interaction(multi-hydrogen bond)into the polyacrylamide molecular chain.Thanks to the exceptional freeze resistance(84%capacity retention at-20℃)and intrinsic self-healing capabilities(95%capacity retention after 5 cutting/self-healing cycles),the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications.The Zn||AF/SH-Hydrogel||MnO_(2)device offers a near-theoretical specific capacity of 285 m A h g^(-1)at 0.1 A g^(-1)(Coulombic efficiency≈100%),as well as good self-healing capability and mechanical flexibility in an ice bath.This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices. 展开更多
关键词 Flexible aqueous battery Hydrogel electrolyte ANTI-FREEZING SELF-HEALING Dual-dynamic reversible bond
下载PDF
A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms
20
作者 Yuqi Luo Lu Gao Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期543-556,I0012,共15页
With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantage... With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantages.Among them,the earliest developed organic solid-state polymer electrolyte has a promising future due to its advantages such as good mechanical flexibility,but its poor ion transport performance dramatically limits its performance improvement.Therefore,single-ion conducting polymer electrolytes(SICPEs)with high lithium-ion transport number,capable of improving the concentration polarization and inhibiting the growth of lithium dendrites,have been proposed,which provide a new direction for the further development of high-performance organic polymer electrolytes.In view of this,lithium ions transport mechanisms and design principles in SICPEs are summarized and discussed in this paper.The modification principles currently used can be categorized into the following three types:enhancement of lithium salt anion-polymer interactions,weakening of lithium salt anion-cation interactions,and modulation of lithium ion-polymer interactions.In addition,the advances in single-ion conductors of conventional and novel polymer electrolytes are summarized,and several typical highperformance single-ion conductors are enumerated and analyzed in what way they improve ionic conductivity,lithium ions mobility,and the ability to inhibit lithium dendrites.Finally,the advantages and design methodology of SICPEs are summarized again and the future directions are outlined. 展开更多
关键词 Lithium metal batteries Single-ion conductor Polymer electrolytes Ion transport mechanism Li-ion transport number
下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部