Long-term evolution of the Black Sea dynamics (1980-2020) is reconstructed by means of numerical simulation. The model of the Black Sea circulation is z-coordinate model with 4.8 km horizontal space resolution and 4...Long-term evolution of the Black Sea dynamics (1980-2020) is reconstructed by means of numerical simulation. The model of the Black Sea circulation is z-coordinate model with 4.8 km horizontal space resolution and 40 levels in vertical direction. Mixing processes in the upper layer are parameterized with the Mellor-Yamada turbulent model. As for the boundary conditions on the sea surface, we used atmospheric forcing functions for the Black Sea region provided by CMCC using regional climate model COSMO-CLM. These data have a spatial resolution of 14km and a daily temporal resolution. To evaluate the quality of the Black Sea circulation dynamics, derived from simulation, the modeling results are compared with results of the Black Sea physical reanalysis. This reanalysis was performed by assimilating the temperature and salinity profiles from hydrographic surveys conducted during 1971-1993.展开更多
文摘Long-term evolution of the Black Sea dynamics (1980-2020) is reconstructed by means of numerical simulation. The model of the Black Sea circulation is z-coordinate model with 4.8 km horizontal space resolution and 40 levels in vertical direction. Mixing processes in the upper layer are parameterized with the Mellor-Yamada turbulent model. As for the boundary conditions on the sea surface, we used atmospheric forcing functions for the Black Sea region provided by CMCC using regional climate model COSMO-CLM. These data have a spatial resolution of 14km and a daily temporal resolution. To evaluate the quality of the Black Sea circulation dynamics, derived from simulation, the modeling results are compared with results of the Black Sea physical reanalysis. This reanalysis was performed by assimilating the temperature and salinity profiles from hydrographic surveys conducted during 1971-1993.