基于热扩散原理设计了一款热式风速传感器,它是以Flow Sens FS5为感应元件,将其接入传感器电路之中,通过模拟采集电路转换为电压信号。将电压信号经差动放大电路放大之后,再经过信号滤波电路进行滤波,使电压的幅值比较稳定。最后由MSP43...基于热扩散原理设计了一款热式风速传感器,它是以Flow Sens FS5为感应元件,将其接入传感器电路之中,通过模拟采集电路转换为电压信号。将电压信号经差动放大电路放大之后,再经过信号滤波电路进行滤波,使电压的幅值比较稳定。最后由MSP430F149单片机的A/D定时采集电压信号,单片机处理采集数据并在液晶上显示风速值。展开更多
The outputs of 17 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to investigate the temporal and spatial features of 2.0°C warming of the surface temperature over the globe and C...The outputs of 17 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to investigate the temporal and spatial features of 2.0°C warming of the surface temperature over the globe and China under the Representative Concentration Pathways (RCP) 4.5 scenario. The simulations of the period 1860-1899 in the "historical" experiment are chosen as the baseline. The simulations for the 21st century in the RCP4.5 experiment are chosen as the future project. The multi-model ensemble mean (MME) shows that the global mean temperature would cross the 2.0°C warming threshold in 2047. Warming in most of the models would cross the threshold during 2030-2060. For local warming, high-latitude areas in the Northern Hemisphere show the fastest warming over the globe. Land areas warm substantially faster than the oceans. Most of the southern oceans would not exceed the 2.0°C warming threshold within the 21st century. Over China, surface warming is substantially faster than the global mean. The area-averaged warming would cross the 2.0°C threshold in 2034. Locally, Northwest China shows the fastest warming trend, followed by Central North China and Northeast China. Central China, East China, and South China are the last to cross the 2.0°C warming threshold. The diversity of the models is also estimated in this study. Generally, the spread among the models increases with time, and there is smaller spread among the models for the areas with the faster warming.展开更多
基金supported by the National Natural Science Foundation of China[grant numbers 41931181 and 42075048]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number 2022075]。
文摘基于热扩散原理设计了一款热式风速传感器,它是以Flow Sens FS5为感应元件,将其接入传感器电路之中,通过模拟采集电路转换为电压信号。将电压信号经差动放大电路放大之后,再经过信号滤波电路进行滤波,使电压的幅值比较稳定。最后由MSP430F149单片机的A/D定时采集电压信号,单片机处理采集数据并在液晶上显示风速值。
基金supported by the National Basic Research Program of China(Grant No.2009CB421407)
文摘The outputs of 17 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to investigate the temporal and spatial features of 2.0°C warming of the surface temperature over the globe and China under the Representative Concentration Pathways (RCP) 4.5 scenario. The simulations of the period 1860-1899 in the "historical" experiment are chosen as the baseline. The simulations for the 21st century in the RCP4.5 experiment are chosen as the future project. The multi-model ensemble mean (MME) shows that the global mean temperature would cross the 2.0°C warming threshold in 2047. Warming in most of the models would cross the threshold during 2030-2060. For local warming, high-latitude areas in the Northern Hemisphere show the fastest warming over the globe. Land areas warm substantially faster than the oceans. Most of the southern oceans would not exceed the 2.0°C warming threshold within the 21st century. Over China, surface warming is substantially faster than the global mean. The area-averaged warming would cross the 2.0°C threshold in 2034. Locally, Northwest China shows the fastest warming trend, followed by Central North China and Northeast China. Central China, East China, and South China are the last to cross the 2.0°C warming threshold. The diversity of the models is also estimated in this study. Generally, the spread among the models increases with time, and there is smaller spread among the models for the areas with the faster warming.