为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和...为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。展开更多
林地在全球生态系统中扮演着至关重要的角色。但传统监督学习方法在林地提取上存在特征选择不精确与未能充分利用像元间的上下文关系等缺陷,导致林地提取精度不理想。针对上述问题,本文提出了一种基于改进PSPNet(Pyramid Scene Parsing ...林地在全球生态系统中扮演着至关重要的角色。但传统监督学习方法在林地提取上存在特征选择不精确与未能充分利用像元间的上下文关系等缺陷,导致林地提取精度不理想。针对上述问题,本文提出了一种基于改进PSPNet(Pyramid Scene Parsing Network)模型的高分辨率遥感影像林地提取方法。首先,利用高分二号遥感影像与全国第三次土地调查数据,制作高分辨率林地数据集。其次,通过在原始PSPNet模型的基础上加入SE(Squeeze and Excitation)注意力模块,改进PSPNet模型。实验结果表明,本文所改进的PSPNet模型的各项精度指标均优于其他方法,具有较高的提取精度。展开更多
文摘为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。
文摘林地在全球生态系统中扮演着至关重要的角色。但传统监督学习方法在林地提取上存在特征选择不精确与未能充分利用像元间的上下文关系等缺陷,导致林地提取精度不理想。针对上述问题,本文提出了一种基于改进PSPNet(Pyramid Scene Parsing Network)模型的高分辨率遥感影像林地提取方法。首先,利用高分二号遥感影像与全国第三次土地调查数据,制作高分辨率林地数据集。其次,通过在原始PSPNet模型的基础上加入SE(Squeeze and Excitation)注意力模块,改进PSPNet模型。实验结果表明,本文所改进的PSPNet模型的各项精度指标均优于其他方法,具有较高的提取精度。