Numerous equivalent circuits for cavity discharges have been developed, yet most of these models cannot provide simulated sig- nals that precisely reveal the variability of the discharge’s characteristic parameters, ...Numerous equivalent circuits for cavity discharges have been developed, yet most of these models cannot provide simulated sig- nals that precisely reveal the variability of the discharge’s characteristic parameters, such as repetition rate, magnitude and phase of discharges, which makes them not suitable for intensive studies of discharge process. Therefore, using Simulink code, we theoretically ana- lyzed and studied the classical equivalent circuits of cavity discharges, as well as the influence of circuit components on simulation results, and then proposed a novel equivalent circuit, the key parameters of which were determined according to the physical behavior of cavity discharges. In the novel equivalent circuit, the repetition rate can be changed by discharge resistance, inception and residual voltages; meanwhile the phase of discharge can be controlled by adjusting the parameters of shunt resistance. Furthermore, a controlled current source as a function of space charge is introduced in the equivalent circuit. Compared with the former ones, the simulated signals obtained by this novel model are better approximation of real signals. This work could be referred by latter studies of the characteristics and the me- chanisms of cavity discharge in oil-paper insulation.展开更多
基金Project supported by National Basic Research Program of China(973 Program) (2012CB215205)Fund for Innovative Research Groups of China (51021005)
文摘Numerous equivalent circuits for cavity discharges have been developed, yet most of these models cannot provide simulated sig- nals that precisely reveal the variability of the discharge’s characteristic parameters, such as repetition rate, magnitude and phase of discharges, which makes them not suitable for intensive studies of discharge process. Therefore, using Simulink code, we theoretically ana- lyzed and studied the classical equivalent circuits of cavity discharges, as well as the influence of circuit components on simulation results, and then proposed a novel equivalent circuit, the key parameters of which were determined according to the physical behavior of cavity discharges. In the novel equivalent circuit, the repetition rate can be changed by discharge resistance, inception and residual voltages; meanwhile the phase of discharge can be controlled by adjusting the parameters of shunt resistance. Furthermore, a controlled current source as a function of space charge is introduced in the equivalent circuit. Compared with the former ones, the simulated signals obtained by this novel model are better approximation of real signals. This work could be referred by latter studies of the characteristics and the me- chanisms of cavity discharge in oil-paper insulation.