This study investigates the evolution of an extreme anomalous anticyclone(AA)event over Northeast Asia,which was one of the dominant circulation systems responsible for the catastrophic extreme precipitation event in ...This study investigates the evolution of an extreme anomalous anticyclone(AA)event over Northeast Asia,which was one of the dominant circulation systems responsible for the catastrophic extreme precipitation event in July 2021 in Henan,and further explores the significant impact of this AA on surface temperatures beneath it.The results indicate that this AA event over Northeast Asia was unprecedented in terms of intensity and duration.The AA was very persistent and extremely strong for 10 consecutive days from 13 to 22 July 2021.This long-lived and unprecedented AA led to the persistence of warmer surface temperatures beyond the temporal span of the pronounced 500-hPa anticyclonic signature as the surface air temperatures over land in Northeast Asia remained extremely warm through 29 July 2021.Moreover,the sea surface temperatures in the Sea of Japan/East Sea were extremely high for 30 consecutive days from 13 July to 11 August 2021,persisting well after the weakening or departure of this AA.These results emphasize the extreme nature of this AA over Northeast Asia in July 2021 and its role in multiple extreme climate events,even over remote regions.Furthermore,possible reasons for this long-lasting AA are explored,and it is suggested to be a byproduct of a teleconnection pattern over extratropical Eurasia during the first half of its life cycle,and of the Pacific-Japan teleconnection pattern during the latter half.展开更多
高原涡(TPV)是生成于青藏高原主体的一类浅薄中尺度涡旋系统,其发生频繁、影响范围广、造成灾害强,是我国最重要的致灾中尺度系统之一。全面揭示高原涡的统计特征是本领域研究的重要基础。其中,高原涡的精准识别是认识其统计特征的关键...高原涡(TPV)是生成于青藏高原主体的一类浅薄中尺度涡旋系统,其发生频繁、影响范围广、造成灾害强,是我国最重要的致灾中尺度系统之一。全面揭示高原涡的统计特征是本领域研究的重要基础。其中,高原涡的精准识别是认识其统计特征的关键。随着高时空分辨率再分析资料的出现,高原涡的研究有了更好的数据基础,然而,无论是人工识别方法还是基于较粗分辨率的客观识别算法都难以高效地适用于当前的新再分析资料。因此,亟需发展一种高精度的、适用于高时空分辨率再分析资料的高原涡客观识别方法。本文提出了一种适用于高分辨率再分析资料、基于风场的限制涡度高原涡客观识别算法(Restricted-vorticity based Tibetan-Plateau-vortex Identifying Algorithm,简称RTIA)。该方法首先判断高原涡候选点,然后以候选点为中心,划分多个象限,通过象限平均风场限定条件和象限组逆时针旋转(北半球)条件确定高原涡中心,无需复杂计算及对各气压层分别设定阈值,即可快速实现高原涡的水平和垂直追踪。基于1979~2020年共42个暖季(5~9月)、15466个高原涡(共计99090时次)大样本的评估表明,RTIA方法识别高原涡的平均命中率超过95%,平均空报率低于9%,平均漏报率少于5%,可以十分准确地对高原涡进行识别。此外,评估还表明RTIA方法应用于不同空间分辨率的再分析资料(如0.5°或0.25°)时,仍能保持高原涡识别的高准确率,其识别结果主要受涡旋自身强度的影响,对弱涡旋的识别精度比强涡旋偏低。该方法对其他中尺度涡旋识别也具有一定的借鉴意义。展开更多
通过使用天气研究与预报(Weather Research and Forecasting,WRF)模式对热带气旋(Tropical Cyclone,TC)个例“派比安”(1807)进行了一组数值试验,分析了东海黑潮暖舌对“派比安”强度的影响。研究结果表明,东海黑潮暖舌高海面温度(以下...通过使用天气研究与预报(Weather Research and Forecasting,WRF)模式对热带气旋(Tropical Cyclone,TC)个例“派比安”(1807)进行了一组数值试验,分析了东海黑潮暖舌对“派比安”强度的影响。研究结果表明,东海黑潮暖舌高海面温度(以下简称“海温”)导致TC区域内海气界面热通量显著增加,并造成TC边界层不稳定特征发展,形成了有利于垂直对流发展的边界层环境。因此TC内特别是TC眼墙处对流更为活跃,TC强度显著提高,同时黑潮暖舌对TC的局部加热还会引起TC内部对流活动的非对称分布。根据数值试验的结果,黑潮暖舌为“派比安”整体动能增加做出约24.7%的贡献,中心气压变化对东海黑潮暖舌高海温特征的响应时间约为10 h。此外,在黑潮暖舌作用下,“派比安”7级风圈半径扩张16.3%,最大风速半径收缩10.7%。展开更多
利用中国地面加密自动站观测资料、北京地区雷达探测资料、NCEP(1°×1°)FNL资料、ECMWF ERA Interim(0.125°×0.125°)逐日再分析资料等,对造成2016年7月19—20日华北极端暴雨中的低涡系统发展演变的结构特...利用中国地面加密自动站观测资料、北京地区雷达探测资料、NCEP(1°×1°)FNL资料、ECMWF ERA Interim(0.125°×0.125°)逐日再分析资料等,对造成2016年7月19—20日华北极端暴雨中的低涡系统发展演变的结构特征和加强机制进行了研究。华北地区这次特大暴雨过程出现了3个阶段降水,其中与低涡系统强烈发展对应的第2阶段降水是本次华北暴雨过程的主要降水阶段。针对该低涡的分析表明:(1)850 hPa以西南低涡为中心的低压带中,在河南西北部新生低涡系统,并且其在向华北地区移动过程中显著加强,该低涡系统在空间结构上,从倾斜涡柱逐渐发展成近乎直立的、贯穿整个对流层的深厚低涡系统;(2)中低层低涡系统快速发展过程与高低空系统构成耦合作用有关:低层低涡系统显著加强之前,对流层上层(300—200 hPa)首先出现高空槽异常加深并向南发展,该高空槽发展的开始阶段与其本身冷暖平流造成的斜压发展过程对应;而后,随着高纬度平流层高位涡沿等熵面向南运动,造成华北地区对流层上层涡度增强,形成正位涡异常区;当这一正位涡异常区叠加在对流层中低层锋区上空时,造成对流层中低层气旋快速发展并向下伸展,诱发河南西北部的新生气旋;低涡系统的发展进一步强化了低空暖平流,促使低空气旋向东北方向发展"移动"(本质上是暖平流前端造成的气旋发展),这一动力学过程反过来使高层的涡度增强;这一正反馈过程形成的耦合环流不仅造成了整个涡度柱强度增强,而且垂直结构上逐渐由倾斜涡柱演变为近乎于直立的涡柱;(3)随着低涡系统增强,极大地加强了垂直上升运动并触发了对流,形成大范围的强降水,大量的凝结潜热释放,造成了低层低涡系统在强降水开始阶段的快速发展和增强;20日00时(世界时)以后,虽然对流活动显著减弱,但低涡系统的加深维持了大范围强降水过程的持续。强降水与低涡发展的正反馈过程是这次华北暴雨得以长时间维持的重要机制之一,这一过程形成的持续性潜热释放也是对流层中上层低涡系统热力结构发生改变的重要原因。展开更多
基金the National Natural Science Foundation of China(Grant Nos.42005029 and 42130504)the Research Program on Decision Services of China Meteorological Administration(Nos.JCZX2023026 and JCZX2022021).
文摘This study investigates the evolution of an extreme anomalous anticyclone(AA)event over Northeast Asia,which was one of the dominant circulation systems responsible for the catastrophic extreme precipitation event in July 2021 in Henan,and further explores the significant impact of this AA on surface temperatures beneath it.The results indicate that this AA event over Northeast Asia was unprecedented in terms of intensity and duration.The AA was very persistent and extremely strong for 10 consecutive days from 13 to 22 July 2021.This long-lived and unprecedented AA led to the persistence of warmer surface temperatures beyond the temporal span of the pronounced 500-hPa anticyclonic signature as the surface air temperatures over land in Northeast Asia remained extremely warm through 29 July 2021.Moreover,the sea surface temperatures in the Sea of Japan/East Sea were extremely high for 30 consecutive days from 13 July to 11 August 2021,persisting well after the weakening or departure of this AA.These results emphasize the extreme nature of this AA over Northeast Asia in July 2021 and its role in multiple extreme climate events,even over remote regions.Furthermore,possible reasons for this long-lasting AA are explored,and it is suggested to be a byproduct of a teleconnection pattern over extratropical Eurasia during the first half of its life cycle,and of the Pacific-Japan teleconnection pattern during the latter half.
文摘高原涡(TPV)是生成于青藏高原主体的一类浅薄中尺度涡旋系统,其发生频繁、影响范围广、造成灾害强,是我国最重要的致灾中尺度系统之一。全面揭示高原涡的统计特征是本领域研究的重要基础。其中,高原涡的精准识别是认识其统计特征的关键。随着高时空分辨率再分析资料的出现,高原涡的研究有了更好的数据基础,然而,无论是人工识别方法还是基于较粗分辨率的客观识别算法都难以高效地适用于当前的新再分析资料。因此,亟需发展一种高精度的、适用于高时空分辨率再分析资料的高原涡客观识别方法。本文提出了一种适用于高分辨率再分析资料、基于风场的限制涡度高原涡客观识别算法(Restricted-vorticity based Tibetan-Plateau-vortex Identifying Algorithm,简称RTIA)。该方法首先判断高原涡候选点,然后以候选点为中心,划分多个象限,通过象限平均风场限定条件和象限组逆时针旋转(北半球)条件确定高原涡中心,无需复杂计算及对各气压层分别设定阈值,即可快速实现高原涡的水平和垂直追踪。基于1979~2020年共42个暖季(5~9月)、15466个高原涡(共计99090时次)大样本的评估表明,RTIA方法识别高原涡的平均命中率超过95%,平均空报率低于9%,平均漏报率少于5%,可以十分准确地对高原涡进行识别。此外,评估还表明RTIA方法应用于不同空间分辨率的再分析资料(如0.5°或0.25°)时,仍能保持高原涡识别的高准确率,其识别结果主要受涡旋自身强度的影响,对弱涡旋的识别精度比强涡旋偏低。该方法对其他中尺度涡旋识别也具有一定的借鉴意义。
文摘通过使用天气研究与预报(Weather Research and Forecasting,WRF)模式对热带气旋(Tropical Cyclone,TC)个例“派比安”(1807)进行了一组数值试验,分析了东海黑潮暖舌对“派比安”强度的影响。研究结果表明,东海黑潮暖舌高海面温度(以下简称“海温”)导致TC区域内海气界面热通量显著增加,并造成TC边界层不稳定特征发展,形成了有利于垂直对流发展的边界层环境。因此TC内特别是TC眼墙处对流更为活跃,TC强度显著提高,同时黑潮暖舌对TC的局部加热还会引起TC内部对流活动的非对称分布。根据数值试验的结果,黑潮暖舌为“派比安”整体动能增加做出约24.7%的贡献,中心气压变化对东海黑潮暖舌高海温特征的响应时间约为10 h。此外,在黑潮暖舌作用下,“派比安”7级风圈半径扩张16.3%,最大风速半径收缩10.7%。
文摘利用中国地面加密自动站观测资料、北京地区雷达探测资料、NCEP(1°×1°)FNL资料、ECMWF ERA Interim(0.125°×0.125°)逐日再分析资料等,对造成2016年7月19—20日华北极端暴雨中的低涡系统发展演变的结构特征和加强机制进行了研究。华北地区这次特大暴雨过程出现了3个阶段降水,其中与低涡系统强烈发展对应的第2阶段降水是本次华北暴雨过程的主要降水阶段。针对该低涡的分析表明:(1)850 hPa以西南低涡为中心的低压带中,在河南西北部新生低涡系统,并且其在向华北地区移动过程中显著加强,该低涡系统在空间结构上,从倾斜涡柱逐渐发展成近乎直立的、贯穿整个对流层的深厚低涡系统;(2)中低层低涡系统快速发展过程与高低空系统构成耦合作用有关:低层低涡系统显著加强之前,对流层上层(300—200 hPa)首先出现高空槽异常加深并向南发展,该高空槽发展的开始阶段与其本身冷暖平流造成的斜压发展过程对应;而后,随着高纬度平流层高位涡沿等熵面向南运动,造成华北地区对流层上层涡度增强,形成正位涡异常区;当这一正位涡异常区叠加在对流层中低层锋区上空时,造成对流层中低层气旋快速发展并向下伸展,诱发河南西北部的新生气旋;低涡系统的发展进一步强化了低空暖平流,促使低空气旋向东北方向发展"移动"(本质上是暖平流前端造成的气旋发展),这一动力学过程反过来使高层的涡度增强;这一正反馈过程形成的耦合环流不仅造成了整个涡度柱强度增强,而且垂直结构上逐渐由倾斜涡柱演变为近乎于直立的涡柱;(3)随着低涡系统增强,极大地加强了垂直上升运动并触发了对流,形成大范围的强降水,大量的凝结潜热释放,造成了低层低涡系统在强降水开始阶段的快速发展和增强;20日00时(世界时)以后,虽然对流活动显著减弱,但低涡系统的加深维持了大范围强降水过程的持续。强降水与低涡发展的正反馈过程是这次华北暴雨得以长时间维持的重要机制之一,这一过程形成的持续性潜热释放也是对流层中上层低涡系统热力结构发生改变的重要原因。