提升降水量级预报精度,有助于优化灾害预警与决策支持。选取2018年1月1日至2021年1月山东省逐12 h降水观测数据和欧洲中期天气预报中心(the European Centre for Medium-Range Weather Forecasting,ECMWF)的集合预报集合平均(Ensemble P...提升降水量级预报精度,有助于优化灾害预警与决策支持。选取2018年1月1日至2021年1月山东省逐12 h降水观测数据和欧洲中期天气预报中心(the European Centre for Medium-Range Weather Forecasting,ECMWF)的集合预报集合平均(Ensemble Prediction Ensemble Mean,EPEM)结果进行72 h内逐12 h降水量级预报统计订正,然后对比ECMWF集合平均降水预报插值的原始预报(EC_EPEM)、基于EC_EPEM的输出统计(Model Output Statistics,MOS)预报(EC_EPEM_MOS)、利用最优TS(Threat Score)评分订正(Optimal Threat Score,OTS)预报(EC_EPEM_OTS)的效果。结果表明:EC_EPEM_MOS在较小量级上表现最优,但在大量级上订正效果稍差,甚至略低于EC_EPEM;EC_EPEM_OTS仅在0.1、10 mm量级上低于EC_EPEM_MOS,其他量级均为最优,尤其在较大量级上订正效果更明显。在50、100 mm大量级上,EC_EPEM_OTS在12~72 h时效订正效果均最优,这是由于EC_EPEM_OTS在稍大量级上提高订正系数使得大量级降水漏报率减小,同时对大量级降水使用较小订正系数也减小了空报率。在较小量级降水中短期预报时效除了山东中部山区外EC_EPEM_MOS表现最佳,山区EC_EPEM_OTS最佳;中等以上量级、尤其较大量级降水,山东大部分地区EC_EPEM_OTS表现最佳。EC_EPEM_MOS订正预报有效地减小了EC_EPEM的空报问题。EC_EPEM_OTS的订正效果最佳,在大范围强降雨过程中与实况降雨分布更为接近,降水总体分布把握较好。展开更多
基于2020-2021年的中国气象局(CMA)陆面数据同化系统(CLDAS)逐小时地面气温(T2m)产品,融合CMA上海快速更新循环数值预报(CMA-SH3)的T2m预报数据,构建深度学习语义分割模型(MT-Cunet),实现逐小时滚动更新的24 h T2m网格预报,并对2022年...基于2020-2021年的中国气象局(CMA)陆面数据同化系统(CLDAS)逐小时地面气温(T2m)产品,融合CMA上海快速更新循环数值预报(CMA-SH3)的T2m预报数据,构建深度学习语义分割模型(MT-Cunet),实现逐小时滚动更新的24 h T2m网格预报,并对2022年预报结果进行了检验评估。结果表明,在研究范围内,MT-Cunet在3~9 h时效订正效果最好,平均MAE和平均RMSE分别降低42.4%、40.89%;10~24 h时效的订正效果较好,平均MAE和平均RMSE分别下降26.7%、26.3%。低温(≤0℃)和高温(≥35℃)事件检验评估表明,MT-Cunet在高温预报整体表现为正偏差,而低温整体为负偏差,但误差幅度远低于CMA-SH3;空间尺度上,MT-Cunet能较大幅度减少复杂地形下的T2m预报误差,降低CMA-SH3的MAE离散度,使预报误差分布较为稳定。通过对2022年2月和3月的区域性增温、寒潮过程分别进行检验评估发现,MT-Cunet能较好预报出增(降)温转折时间和增(降)温幅度。在增温和寒潮过程中,MT-Cunet的MAE比CMA-SH3分别降低28.9%和33.8%,表明MT-Cunet模型在转折性天气过程中同样具有较好的预报能力。因此,利用可以快速增加预报样本数量的快速更新循环数值预报,经过语义分割深度学习模型客观方法订正,就能较大幅度降低数值模式预报误差,解决常规数值预报由于数据量太少,深度学习训练效果较差的问题,这对充分利用国产模式资源,更广泛地开展国产模式后处理和应用提出了一个新的思路。展开更多
文摘基于2020-2021年的中国气象局(CMA)陆面数据同化系统(CLDAS)逐小时地面气温(T2m)产品,融合CMA上海快速更新循环数值预报(CMA-SH3)的T2m预报数据,构建深度学习语义分割模型(MT-Cunet),实现逐小时滚动更新的24 h T2m网格预报,并对2022年预报结果进行了检验评估。结果表明,在研究范围内,MT-Cunet在3~9 h时效订正效果最好,平均MAE和平均RMSE分别降低42.4%、40.89%;10~24 h时效的订正效果较好,平均MAE和平均RMSE分别下降26.7%、26.3%。低温(≤0℃)和高温(≥35℃)事件检验评估表明,MT-Cunet在高温预报整体表现为正偏差,而低温整体为负偏差,但误差幅度远低于CMA-SH3;空间尺度上,MT-Cunet能较大幅度减少复杂地形下的T2m预报误差,降低CMA-SH3的MAE离散度,使预报误差分布较为稳定。通过对2022年2月和3月的区域性增温、寒潮过程分别进行检验评估发现,MT-Cunet能较好预报出增(降)温转折时间和增(降)温幅度。在增温和寒潮过程中,MT-Cunet的MAE比CMA-SH3分别降低28.9%和33.8%,表明MT-Cunet模型在转折性天气过程中同样具有较好的预报能力。因此,利用可以快速增加预报样本数量的快速更新循环数值预报,经过语义分割深度学习模型客观方法订正,就能较大幅度降低数值模式预报误差,解决常规数值预报由于数据量太少,深度学习训练效果较差的问题,这对充分利用国产模式资源,更广泛地开展国产模式后处理和应用提出了一个新的思路。