为提升贺兰山东麓葡萄园晚霜冻灾害精细化防御能力,利用2020—2023年4—5月贺兰山东麓葡萄园农田小气候站最低气温观测数据,分析葡萄园最低气温变化特征、晚霜冻发生频率和区域分布特征,并基于欧洲中期天气预报中心(European Centre for...为提升贺兰山东麓葡萄园晚霜冻灾害精细化防御能力,利用2020—2023年4—5月贺兰山东麓葡萄园农田小气候站最低气温观测数据,分析葡萄园最低气温变化特征、晚霜冻发生频率和区域分布特征,并基于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)模式预报产品和宁夏地区格点气温实况,采用径向基函数(Radial Basis Function,RBF)神经网络算法,构建贺兰山东麓葡萄园最低气温和霜冻预报模型。结果表明:贺兰山东麓葡萄园轻霜冻最为普遍,其次是中霜冻,4月是霜冻发生的主要月份,东方裕兴酒庄霜冻出现最频繁,观兰酒庄霜冻最少,红寺堡产区是霜冻易发区。最低气温和霜冻预报检验结果显示,与ECMWF模式相比,RBF模型对贺兰、永宁和红寺堡产区的最低气温预报准确率提高,最高提升幅度达33.8%,平均绝对误差降低0.20~1.50℃。从单站霜冻预报看,RBF模型有明显优势,准确率普遍提升1.0%~14.0%,平均绝对误差降低0.04~0.37℃;从产区平均看,RBF模型对红寺堡产区霜冻预报准确率提高最多,达13.0%。在针对霜冻的实例分析中,RBF模型预报效果更优,特别是对中霜冻预报优势明显,相比ECMWF模式准确率提升25.0%~50.0%,平均绝对误差降低1.80~2.10℃。展开更多
为提升区域数值预报系统2 m气温预报性能,利用土壤温度和土壤湿度站点观测资料,对中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)陆面资料在浙江地区的精度进行评估,并将其融合应用于浙江省数值预报业务系统。...为提升区域数值预报系统2 m气温预报性能,利用土壤温度和土壤湿度站点观测资料,对中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)陆面资料在浙江地区的精度进行评估,并将其融合应用于浙江省数值预报业务系统。结果表明:CLDAS土壤温度、土壤湿度产品相对于美国全球预报系统(Global Forecast System,GFS)分析场,与观测相比具有更小的均方根误差和更高的相关系数,在浙江省有较好的适用性。个例分析表明区域数值模式2 m气温预报对陆面资料变化较敏感,融合CLDAS地表温度、土壤温湿度实时分析产品的初始场,可持续影响到模式预报后期,主要通过地表感热、潜热通量直接影响气温变化。从均方根误差来看,与基于GFS分析场作为陆面初始场的区域模式预报相比,应用了CLDAS陆面资料的模式预报改进了13.6%。2021年7月阶段性应用结果显示,模式初始场融合CLDAS陆面资料后有效提高了浙江省2 m气温预报水平,融合后的预报改进效果夜间较白天明显,且晴热高温天气背景下较梅雨期、台风期改进更佳。高温天气预报评估进一步表明,CLDAS陆面资料的应用对浙江省高温事件预报有较好的改进,尤其对金衢盆地等高温区改进明显。展开更多
为做好ECMWF(European Centre for Medium-Range Weather Forecasting)模式本地化释用,提高四川省降水预报准确率,对四川省2020—2021年7—9月模式各量级降水预报系统性偏差规律分析发现,该模式预报的雨日较实况偏多,尤其是攀西地区和...为做好ECMWF(European Centre for Medium-Range Weather Forecasting)模式本地化释用,提高四川省降水预报准确率,对四川省2020—2021年7—9月模式各量级降水预报系统性偏差规律分析发现,该模式预报的雨日较实况偏多,尤其是攀西地区和川西高原;预报的大雨日数盆地西南部及攀西地区多于实况,而盆地南部少于实况。然后,基于分位数映射法对模式预报的24 h累积降水开展大量级降水订正试验与检验。基于分位数映射法订正后,暴雨及以上量级TS(Threat Score)提高7%~15%,且各量级降水TS均高于多模式集成客观预报产品2%~4%,大雨及以上、暴雨及以上量级命中率提高10%~20%,订正后雨带位置特别是暴雨落区与实况更接近。展开更多
基于四川地区1990—2019年的逐日2 m最高、最低温度站点实况数据,对气温转折天气过程进行统计和分析,在此基础上,应用LightGBM(Light Gradient Boosting Machine)算法及NCEP/NCAR(National Center for Environmental Prediction/Nationa...基于四川地区1990—2019年的逐日2 m最高、最低温度站点实况数据,对气温转折天气过程进行统计和分析,在此基础上,应用LightGBM(Light Gradient Boosting Machine)算法及NCEP/NCAR(National Center for Environmental Prediction/National Center for Atmospheric Research)逐日再分析资料,构建气温转折天气过程变温订正模型。结果表明:(1)出现气温转折过程最多的区域是高原与盆地的边坡过渡区,最少的是盆地;(2)各区域的气温转折过程具有明显的季节差异,均表现为春季最多、冬季最少,且春季的气温转折过程明显多于其他3季;(3)在1990—2019年验证集中,LightGBM订正模型表现较好,准确率为78.64%,平均绝对误差为1.35℃。(4)在2020年的独立样本测试中,LightGBM订正模型的准确率为53.60%,平均绝对误差为2.19℃,整体订正效果优于ECMWF模式(European Centre for Medium-Range Weather Forecasting)、中央台城镇预报指导报(SCMOC)及四川省气象台数值预报客观释用城镇预报指导报(SPCO)的预报。展开更多
基于中国气象局陆面数据同化系统(Land surface Data Assimilation System of China Meteorological Administration,CLDAS)逐小时气温实况融合数据,检验评估了ECMWF、CMA-MESO-3km不同尺度模式对甘肃省逐小时气温的预报性能,并利用低...基于中国气象局陆面数据同化系统(Land surface Data Assimilation System of China Meteorological Administration,CLDAS)逐小时气温实况融合数据,检验评估了ECMWF、CMA-MESO-3km不同尺度模式对甘肃省逐小时气温的预报性能,并利用低频滑动平均订正算法(LPSC)对模式的系统性误差进行订正;同时对SCMOC和订正后两种模式的逐小时气温预报效果进行了统计对比。结果表明:(1)ECMWF、CMA-MESO-3km模式对甘肃省逐小时气温的预报具有相对稳定的系统性误差,夜间预报准确率明显低于白天,主要表现为夜间预报显著偏高,白天为小的负偏差。(2)LPSC算法能够有效改善ECMWF和CMA-MESO-3km对甘肃省逐小时气温预报的系统性误差,订正效果显著。订正后ECMWF、CMA-MESO-3km的预报准确率分别较模式本身提高了20.24%、20.25%,平均误差减小至±0.3℃之内;空间分布亦表明,订正后全省平均误差均明显降低至±2℃之内。(3)同类产品对比检验表明:订正后ECMWF、CMA-MESO-3km两种逐小时气温预报产品的预报效果整体上均优于SCMOC,预报准确率分别较SCMOC高20.65%、13.55%,平均绝对误差在各个时次也明显低于SCMOC。技巧评分的空间分布表明,订正后ECMWF在全省大部分地方均为正技巧,其中酒泉南部山区可达80%以上;而订正后CMA-MESO-3km的预报效果各个季节分布存在差异,主要体现在陇中和陇东南地区,冬春季以弱的正技巧为主,夏秋季基本为负技巧。另外,业务应用结果表明,对于转折性天气过程,使用该方法需要特别注意。展开更多
文摘为提升贺兰山东麓葡萄园晚霜冻灾害精细化防御能力,利用2020—2023年4—5月贺兰山东麓葡萄园农田小气候站最低气温观测数据,分析葡萄园最低气温变化特征、晚霜冻发生频率和区域分布特征,并基于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)模式预报产品和宁夏地区格点气温实况,采用径向基函数(Radial Basis Function,RBF)神经网络算法,构建贺兰山东麓葡萄园最低气温和霜冻预报模型。结果表明:贺兰山东麓葡萄园轻霜冻最为普遍,其次是中霜冻,4月是霜冻发生的主要月份,东方裕兴酒庄霜冻出现最频繁,观兰酒庄霜冻最少,红寺堡产区是霜冻易发区。最低气温和霜冻预报检验结果显示,与ECMWF模式相比,RBF模型对贺兰、永宁和红寺堡产区的最低气温预报准确率提高,最高提升幅度达33.8%,平均绝对误差降低0.20~1.50℃。从单站霜冻预报看,RBF模型有明显优势,准确率普遍提升1.0%~14.0%,平均绝对误差降低0.04~0.37℃;从产区平均看,RBF模型对红寺堡产区霜冻预报准确率提高最多,达13.0%。在针对霜冻的实例分析中,RBF模型预报效果更优,特别是对中霜冻预报优势明显,相比ECMWF模式准确率提升25.0%~50.0%,平均绝对误差降低1.80~2.10℃。
文摘为提升区域数值预报系统2 m气温预报性能,利用土壤温度和土壤湿度站点观测资料,对中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)陆面资料在浙江地区的精度进行评估,并将其融合应用于浙江省数值预报业务系统。结果表明:CLDAS土壤温度、土壤湿度产品相对于美国全球预报系统(Global Forecast System,GFS)分析场,与观测相比具有更小的均方根误差和更高的相关系数,在浙江省有较好的适用性。个例分析表明区域数值模式2 m气温预报对陆面资料变化较敏感,融合CLDAS地表温度、土壤温湿度实时分析产品的初始场,可持续影响到模式预报后期,主要通过地表感热、潜热通量直接影响气温变化。从均方根误差来看,与基于GFS分析场作为陆面初始场的区域模式预报相比,应用了CLDAS陆面资料的模式预报改进了13.6%。2021年7月阶段性应用结果显示,模式初始场融合CLDAS陆面资料后有效提高了浙江省2 m气温预报水平,融合后的预报改进效果夜间较白天明显,且晴热高温天气背景下较梅雨期、台风期改进更佳。高温天气预报评估进一步表明,CLDAS陆面资料的应用对浙江省高温事件预报有较好的改进,尤其对金衢盆地等高温区改进明显。
文摘为做好ECMWF(European Centre for Medium-Range Weather Forecasting)模式本地化释用,提高四川省降水预报准确率,对四川省2020—2021年7—9月模式各量级降水预报系统性偏差规律分析发现,该模式预报的雨日较实况偏多,尤其是攀西地区和川西高原;预报的大雨日数盆地西南部及攀西地区多于实况,而盆地南部少于实况。然后,基于分位数映射法对模式预报的24 h累积降水开展大量级降水订正试验与检验。基于分位数映射法订正后,暴雨及以上量级TS(Threat Score)提高7%~15%,且各量级降水TS均高于多模式集成客观预报产品2%~4%,大雨及以上、暴雨及以上量级命中率提高10%~20%,订正后雨带位置特别是暴雨落区与实况更接近。
文摘基于四川地区1990—2019年的逐日2 m最高、最低温度站点实况数据,对气温转折天气过程进行统计和分析,在此基础上,应用LightGBM(Light Gradient Boosting Machine)算法及NCEP/NCAR(National Center for Environmental Prediction/National Center for Atmospheric Research)逐日再分析资料,构建气温转折天气过程变温订正模型。结果表明:(1)出现气温转折过程最多的区域是高原与盆地的边坡过渡区,最少的是盆地;(2)各区域的气温转折过程具有明显的季节差异,均表现为春季最多、冬季最少,且春季的气温转折过程明显多于其他3季;(3)在1990—2019年验证集中,LightGBM订正模型表现较好,准确率为78.64%,平均绝对误差为1.35℃。(4)在2020年的独立样本测试中,LightGBM订正模型的准确率为53.60%,平均绝对误差为2.19℃,整体订正效果优于ECMWF模式(European Centre for Medium-Range Weather Forecasting)、中央台城镇预报指导报(SCMOC)及四川省气象台数值预报客观释用城镇预报指导报(SPCO)的预报。
文摘基于中国气象局陆面数据同化系统(Land surface Data Assimilation System of China Meteorological Administration,CLDAS)逐小时气温实况融合数据,检验评估了ECMWF、CMA-MESO-3km不同尺度模式对甘肃省逐小时气温的预报性能,并利用低频滑动平均订正算法(LPSC)对模式的系统性误差进行订正;同时对SCMOC和订正后两种模式的逐小时气温预报效果进行了统计对比。结果表明:(1)ECMWF、CMA-MESO-3km模式对甘肃省逐小时气温的预报具有相对稳定的系统性误差,夜间预报准确率明显低于白天,主要表现为夜间预报显著偏高,白天为小的负偏差。(2)LPSC算法能够有效改善ECMWF和CMA-MESO-3km对甘肃省逐小时气温预报的系统性误差,订正效果显著。订正后ECMWF、CMA-MESO-3km的预报准确率分别较模式本身提高了20.24%、20.25%,平均误差减小至±0.3℃之内;空间分布亦表明,订正后全省平均误差均明显降低至±2℃之内。(3)同类产品对比检验表明:订正后ECMWF、CMA-MESO-3km两种逐小时气温预报产品的预报效果整体上均优于SCMOC,预报准确率分别较SCMOC高20.65%、13.55%,平均绝对误差在各个时次也明显低于SCMOC。技巧评分的空间分布表明,订正后ECMWF在全省大部分地方均为正技巧,其中酒泉南部山区可达80%以上;而订正后CMA-MESO-3km的预报效果各个季节分布存在差异,主要体现在陇中和陇东南地区,冬春季以弱的正技巧为主,夏秋季基本为负技巧。另外,业务应用结果表明,对于转折性天气过程,使用该方法需要特别注意。