The Indonesian Throughflow(ITF), which connects the tropical Pacific and Indian oceans, plays important roles in the inter-ocean water exchange and regional or even global climate variability. The Makassar Strait is t...The Indonesian Throughflow(ITF), which connects the tropical Pacific and Indian oceans, plays important roles in the inter-ocean water exchange and regional or even global climate variability. The Makassar Strait is the main inflow passage of the ITF, carrying about 77% of the total ITF volume transport. In this study, we analyze the simulated ITF in the Makassar Strait in the Simple Ocean Data Assimilation version 3(SODA3) datasets. A total of nine ensemble members of the SODA3 datasets, of which are driven by different surface forcings and bulk formulas, and with or without data assimilation, are used in this study. The annual mean water transports(i.e.,volume, heat and freshwater) are related to the combination of surface forcing and bulk formula, as well as whether data assimilation is employed. The phases of the seasonal and interannual variability in water transports cross the Makassar Strait, are basically consistent with each other among the SODA3 ensemble members. The interannual variability in Makassar Strait volume and heat transports are significantly correlated with El Ni?oSouthern Oscillation(ENSO) at time lags of-6 to 7 months. There is no statistically significant correlation between the freshwater transport and the ENSO. The Makassar Strait water transports are not significantly correlated with the Indian Ocean Dipole(IOD), which may attribute to model deficiency in simulating the propagation of semiannual Kelvin waves from the Indian Ocean to the Makassar Strait.展开更多
An obvious trend shift in the annual mean and winter mixed layer depth(MLD)in the Antarctic Circumpolar Current(ACC)region was detected during the 1960–2021 period.Shallowing trends stopped in mid-1980s,followed by a...An obvious trend shift in the annual mean and winter mixed layer depth(MLD)in the Antarctic Circumpolar Current(ACC)region was detected during the 1960–2021 period.Shallowing trends stopped in mid-1980s,followed by a period of weak trends.The MLD deepening trend difference between the two periods were mainly distributed in the western areas in the Drake Passage,the areas north to Victoria Land and Wilkes Land,and the central parts of the South Indian sector.The newly formed ocean current shear due to the meridional shift of the ACC flow axis between the two periods is the dominant driver for the MLD trends shift distributed in the western areas in the Drake Passage and the central parts of the South Indian sector.The saltier trends in the regions north to Victoria Land and Wilkes Land could be responsible for the strengthening mixing processes in this region.展开更多
Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of...Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB.展开更多
The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the ...The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models.展开更多
本文利用再分析资料和WRFV3.9模式(Weather Research and Forecasting Model)对2020年7月22-24日发生在黄海海域的一次爆发性气旋进行了研究,并对其演变过程和发展机制进行了详细分析。该气旋22日12 UTC在山东南部生成,入海后开始爆发...本文利用再分析资料和WRFV3.9模式(Weather Research and Forecasting Model)对2020年7月22-24日发生在黄海海域的一次爆发性气旋进行了研究,并对其演变过程和发展机制进行了详细分析。该气旋22日12 UTC在山东南部生成,入海后开始爆发性发展,最大加深率达到1.2 Bergeron,23日在黄海中部气压降至最低990 hPa左右,24日在韩国登陆。高空强辐散、低层的暖舌结构、水汽输送和下垫面热通量的变化增强了大气斜压性,使其迅速发展。使用WRF模式对气旋进行模拟,涡度的诊断分析表明,大气低层强斜压性主要通过涡度方程的散度项对气旋的发展起作用,对流项在涡度发展旺盛的时刻也有一定影响。海温的敏感性试验表明,海温变化对气旋移动路径和中心气压影响明显。展开更多
This study explores the spatial structure and transport characteristics of eddies in the Arabian Sea(AS)using Argo profiles and satellite measurements.The majority of eddies occur in the northern AS,especially along i...This study explores the spatial structure and transport characteristics of eddies in the Arabian Sea(AS)using Argo profiles and satellite measurements.The majority of eddies occur in the northern AS,especially along its northeastern boundary.In contrast,the western AS had a relatively higher eddy kinetic energy compared to the eastern part.Particularly,the strongest energetic eddies were present in the Somali Current system.The composite results revealed the evident thermohaline anomalies caused by cyclonic eddies(CEs)and anticyclonic eddies(AEs)in the upper 300m layers.The anomalous temperature structure within CEs and AEs showed a dominant dipole structure in the near-surface layer and a monopole structure below,with maximum temperature anomalies of approximately−0.8℃and+1.0℃located at depths of 100–150m,respectively.The composited salinity structures for CEs and AEs exhibited monopole vertical structures and sandwich-like patterns.For AEs,large positive salinity anomalies occurred at subsurface layers of 60–180 m with a peak value of about 0.07,and weak negative values were observed above 60m and below 180 m.A similar vertical structure but with an opposite sign operates for CEs.The composited CE and AE caused an equatorward salt flux with values of−8.1×10^(4)and−2.2×10^(4)kg s^(−1),respectively.CEs caused an equatorward heat flux of−7.7×10^(11)W,and AEs induced a poleward flux of 1.5×1011 W.展开更多
基金The Fund of Laoshan Laboratory under contract No. LSKJ202202700the National Natural Science Foundation of China under contract Nos 42076023, 42076024 and 41876027the Global Change and Air-Sea Interaction Ⅱ Project under contract No.GASI-01-AIP-STwin。
文摘The Indonesian Throughflow(ITF), which connects the tropical Pacific and Indian oceans, plays important roles in the inter-ocean water exchange and regional or even global climate variability. The Makassar Strait is the main inflow passage of the ITF, carrying about 77% of the total ITF volume transport. In this study, we analyze the simulated ITF in the Makassar Strait in the Simple Ocean Data Assimilation version 3(SODA3) datasets. A total of nine ensemble members of the SODA3 datasets, of which are driven by different surface forcings and bulk formulas, and with or without data assimilation, are used in this study. The annual mean water transports(i.e.,volume, heat and freshwater) are related to the combination of surface forcing and bulk formula, as well as whether data assimilation is employed. The phases of the seasonal and interannual variability in water transports cross the Makassar Strait, are basically consistent with each other among the SODA3 ensemble members. The interannual variability in Makassar Strait volume and heat transports are significantly correlated with El Ni?oSouthern Oscillation(ENSO) at time lags of-6 to 7 months. There is no statistically significant correlation between the freshwater transport and the ENSO. The Makassar Strait water transports are not significantly correlated with the Indian Ocean Dipole(IOD), which may attribute to model deficiency in simulating the propagation of semiannual Kelvin waves from the Indian Ocean to the Makassar Strait.
基金The National Natural Science Foundation of China under contract No.41605052。
文摘An obvious trend shift in the annual mean and winter mixed layer depth(MLD)in the Antarctic Circumpolar Current(ACC)region was detected during the 1960–2021 period.Shallowing trends stopped in mid-1980s,followed by a period of weak trends.The MLD deepening trend difference between the two periods were mainly distributed in the western areas in the Drake Passage,the areas north to Victoria Land and Wilkes Land,and the central parts of the South Indian sector.The newly formed ocean current shear due to the meridional shift of the ACC flow axis between the two periods is the dominant driver for the MLD trends shift distributed in the western areas in the Drake Passage and the central parts of the South Indian sector.The saltier trends in the regions north to Victoria Land and Wilkes Land could be responsible for the strengthening mixing processes in this region.
基金Under the auspices of National Natural Science Foundation of China(No.52279016,51909106,51879108,42002247,41471160)Natural Science Foundation of Guangdong Province,China(No.2020A1515011038,2020A1515111054)+1 种基金Special Fund for Science and Technology Development in 2016 of Department of Science and Technology of Guangdong Province,China(No.2016A020223007)the Project of Jinan Science and Technology Bureau(No.2021GXRC070)。
文摘Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB.
基金Supported by the National Natural Science Foundation of China(No.41976012)the Key Research Program of Laoshan Laboratory(LSL)(No.LSKJ 202202502)the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(No.XDB 42000000)。
文摘The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models.
文摘本文利用再分析资料和WRFV3.9模式(Weather Research and Forecasting Model)对2020年7月22-24日发生在黄海海域的一次爆发性气旋进行了研究,并对其演变过程和发展机制进行了详细分析。该气旋22日12 UTC在山东南部生成,入海后开始爆发性发展,最大加深率达到1.2 Bergeron,23日在黄海中部气压降至最低990 hPa左右,24日在韩国登陆。高空强辐散、低层的暖舌结构、水汽输送和下垫面热通量的变化增强了大气斜压性,使其迅速发展。使用WRF模式对气旋进行模拟,涡度的诊断分析表明,大气低层强斜压性主要通过涡度方程的散度项对气旋的发展起作用,对流项在涡度发展旺盛的时刻也有一定影响。海温的敏感性试验表明,海温变化对气旋移动路径和中心气压影响明显。
基金supported by grants from the National Natural Science Foundation of China(No.42130406)the Scientific Research Foundation of Third Institute of Oceanography,MNR(Nos.2022027 and 2023018)+2 种基金the Deep Sea Habitats Discovery Project of China Deep Ocean Affairs Administration(No.DY-XZ-04)the Asian Countries Maritime Cooperation Fund(No.99950410)the Global Change and Air-Sea Interaction II(Nos.GASI-04-WLHY-01 and GASI-01-SIND-STwin).
文摘This study explores the spatial structure and transport characteristics of eddies in the Arabian Sea(AS)using Argo profiles and satellite measurements.The majority of eddies occur in the northern AS,especially along its northeastern boundary.In contrast,the western AS had a relatively higher eddy kinetic energy compared to the eastern part.Particularly,the strongest energetic eddies were present in the Somali Current system.The composite results revealed the evident thermohaline anomalies caused by cyclonic eddies(CEs)and anticyclonic eddies(AEs)in the upper 300m layers.The anomalous temperature structure within CEs and AEs showed a dominant dipole structure in the near-surface layer and a monopole structure below,with maximum temperature anomalies of approximately−0.8℃and+1.0℃located at depths of 100–150m,respectively.The composited salinity structures for CEs and AEs exhibited monopole vertical structures and sandwich-like patterns.For AEs,large positive salinity anomalies occurred at subsurface layers of 60–180 m with a peak value of about 0.07,and weak negative values were observed above 60m and below 180 m.A similar vertical structure but with an opposite sign operates for CEs.The composited CE and AE caused an equatorward salt flux with values of−8.1×10^(4)and−2.2×10^(4)kg s^(−1),respectively.CEs caused an equatorward heat flux of−7.7×10^(11)W,and AEs induced a poleward flux of 1.5×1011 W.