The shrinking Arctic sea-ice area(SIA) in recent decades is a striking manifestation of the ongoing climate change.Variations of the Arctic sea ice have been continuously observed by satellites since 1979, relatively ...The shrinking Arctic sea-ice area(SIA) in recent decades is a striking manifestation of the ongoing climate change.Variations of the Arctic sea ice have been continuously observed by satellites since 1979, relatively well monitored since the 1950s, but are highly uncertain in the earlier period due to a lack of observations. Several reconstructions of the historical gridded sea-ice concentration(SIC) data were recently presented based on synthesized regional sea-ice observations or by applying a hybrid model–empirical approach. Here, we present an SIC reconstruction for the period1901–2019 based on established co-variability between SIC and surface air temperature, sea surface temperature, and sea level pressure patterns. The reconstructed sea-ice data for March and September are compared to the frequently used Had ISST1.1 and SIBT1850 datasets. Our reconstruction shows a large decrease in SIA from the 1920 to 1940 concurrent with the Early 20th Century Warming event in the Arctic. Such a negative SIA anomaly is absent in Had ISST1.1 data. The amplitude of the SIA anomaly reaches about 0.8 mln km^(2) in March and 1.5 mln km^(2) in September. The anomaly is about three times stronger than that in the SIBT1850 dataset. The larger decrease in SIA in September is largely due to the stronger SIC reduction in the western sector of the Arctic Ocean in the 70°–80°N latitudinal zone. Our reconstruction provides gridded monthly data that can be used as boundary conditions for atmospheric reanalyses and model experiments to study the Arctic climate for the first half of the 20th century.展开更多
The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant...The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant reduction in snow albedo and accelerate melting of snow and ice in the Arctic.By reviewing the published literatures over the past decades,this work provides an overview of the progress in both the measurement and modeling of BC deposition and its impact on Arctic climate change.In summary,the maximum value of BC deposition appears in the western Russian Arctic(26 ng·g^(–1)),and the minimum value appears in Greenland(3 ng·g^(–1)).BC records in the Arctic ice core already peaked in 1920s and 1970s,and shows a regional difference between Greenland and Canadian Arctic.The different temporal variations of Arctic BC ice core records in different regions are closely related to the large variability of BC emissions and transportation processes across the Arctic region.Model simulations usually underestimate the concentration of BC in snow and ice by 2–3 times,and cannot accurately reflect the seasonal and regional changes in BC deposition.Wet deposition is the main removal mechanism of BC in the Arctic,and observations show different seasonal variations in BC wet deposition in Ny-Ålesund and Barrow.This discrepancy may result from varying contributions of anthropogenic and biomass burning(BB)emissions,given the strong influence by BC from BB emissions at Barrow.Arctic BC deposition significantly influences regional climate change in the Arctic,increasing fire activities in the Arctic have made BB source of Arctic BC more crucial.On average,BC in Arctic snow and ice causes an increase of+0.17 W·m^(–2)in radiative forcing and 8 Gt·a^(–1)in runoff in Greenland.As stressed in the latest Arctic Monitoring and Assessment Programme report,reliable source information and long-term and high-resolution observations on Arctic BC deposition will be crucial for a more comprehensive understanding and a better mitigation strategy of Arctic BC.In the future,it is necessary to collect more observations on BC deposition and the corresponding physical processes(e.g.,snow/ice melting,surface energy balance)in the Arctic to provide reliable data for understanding and clarifying the mechanism of the climatic impacts of BC deposition on Arctic snow and ice.展开更多
This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sus...This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sustainable Societies-ARCPATH(https://www.svs.is/en/projects/finished-projects/arcpath). The disciplines represented in the project are related to climatology, anthropology, marine biology, economics, and the broad spectrum of social-ecological studies. Team members were drawn from the Nordic countries, Russia, China, the United States, and Canada. The project was transdisciplinary as well as interdisciplinary as it included collaboration with local knowledge holders. ARCPATH made significant contributions to Arctic research through an improved understanding of the mechanisms that drive climate variability in the Arctic. In tandem with this research, a combination of historical investigations and social, economic, and marine biological fieldwork was carried out for the project study areas of Iceland, Greenland, Norway, and the surrounding seas, with a focus on the joint use of ocean and sea-ice data as well as social-ecological drivers. ARCPATH was able to provide an improved framework for predicting the near-term variation of Arctic climate on spatial scales relevant to society, as well as evaluating possible related changes in socioeconomic realms. In summary, through the integration of information from several different disciplines and research approaches, ARCPATH served to create new and valuable knowledge on crucial issues, thus providing new pathways to action for Arctic communities.展开更多
Arctic sea ice is broadly regarded as an indicator and amplifier of global climate change.The rapid changes in Arctic sea ice have been widely concerned.However,the spatiotemporal changes in the horizontal and vertica...Arctic sea ice is broadly regarded as an indicator and amplifier of global climate change.The rapid changes in Arctic sea ice have been widely concerned.However,the spatiotemporal changes in the horizontal and vertical dimensions of Arctic sea ice and its asymmetry during the melt and freeze seasons are rarely quantified simultaneously based on multiple sources of the same long time series.In this study,the spatiotemporal variation and freeze-thaw asymmetry of Arctic sea ice were investigated from both the horizontal and vertical dimensions during 1979–2020 based on remote sensing and assimilation data.The results indicated that Arctic sea ice was declining at a remarkably high rate of–5.4×10^(4) km^(2)/a in sea ice area(SIA)and–2.2 cm/a in sea ice thickness(SIT)during 1979 to 2020,and the reduction of SIA and SIT was the largest in summer and the smallest in winter.Spatially,compared with other sub-regions,SIA showed a sharper declining trend in the Barents Sea,Kara Sea,and East Siberian Sea,while SIT presented a larger downward trend in the northern Canadian Archipelago,northern Greenland,and the East Siberian Sea.Regarding to the seasonal trend of sea ice on sub-region scale,the reduction rate of SIA exhibited an apparent spatial heterogeneity among seasons,especially in summer and winter,i.e.,the sub-regions linked to the open ocean exhibited a higher decline rate in winter;however,the other sub-regions blocked by the coastlines presented a greater decline rate in summer.For SIT,the sub-regions such as the Beaufort Sea,East Siberian Sea,Chukchi Sea,Central Arctic,and Canadian Archipelago always showed a higher downward rate in all seasons.Furthermore,a striking freeze-thaw asymmetry of Arctic sea ice was also detected.Comparing sea ice changes in different dimensions,sea ice over most regions in the Arctic showed an early retreat and rapid advance in the horizontal dimension but late melting and gradual freezing in the vertical dimension.The amount of sea ice melting and freezing was disequilibrium in the Arctic during the considered period,and the rate of sea ice melting was 0.3×10^(4) km^(2)/a and 0.01 cm/a higher than that of freezing in the horizontal and vertical dimensions,respectively.Moreover,there were notable shifts in the melting and freezing of Arctic sea ice in 1997/2003 and 2000/2004,respectively,in the horizontal/vertical dimension.展开更多
The Antarctic Ice Sheet harbors more than 90%of the Earth ice mass,with significant losses experienced through dynamic thinning,particularly in West Antarctica.The crucial aspect of investigating ice mass balance in h...The Antarctic Ice Sheet harbors more than 90%of the Earth ice mass,with significant losses experienced through dynamic thinning,particularly in West Antarctica.The crucial aspect of investigating ice mass balance in historical periods preceding 1990 hinges on the utilization of ice velocities derived from optical satellite images.We employed declassified satellite images and Landsat images with normalized cross correlation based image matching,adopting an adaptive combination of skills and methods to overcome challenges encountered during the mapping of historical ice velocity in West Antarctica.A basin-wide synthesis velocity map encompassing the coastal regions of most large-scale glaciers and ice shelves in West Antarctica has already been successfully generated.Our results for historical ice velocities cover over 70%of the grounding line in most of the West Antarctic basins.Through adjustments,we uncovered overestimations in ice velocity measurements over an extended period,transforming our ice velocity map into a spatially deterministic,temporally average version.Among all velocity measurements,Thwaites Glacier exhibited a notable spatial variation in the fastest ice flowline and velocity distribution.Overestimation distributions on Thwaites Glacier displayed a clear consistency with the positions of subsequent front calving events,offering insights into the instabilities of ice shelves.展开更多
Arctic education refers not only to the teaching,but also to research,communication,dissemination as well as popularization of knowledge related to the Arctic.This article reviews joint efforts between Chinese and Ame...Arctic education refers not only to the teaching,but also to research,communication,dissemination as well as popularization of knowledge related to the Arctic.This article reviews joint efforts between Chinese and American educators and researchers to promote cooperation and understanding in Arctic education and research,and examines the facing challenges of China-U.S.Arctic education cooperation which include current political or economic tensions between the two countries,the differing perspectives and priorities on Arctic policy,the disproportion in Arctic scientific research,different research methodologies and discourse system in social science.This article also argues that there are opportunities for the two countries to cooperate in Arctic education.Common goals and interests in the Arctic,Arctic-dedicated institutions with significant Arctic research capabilities and partnerships around the world provide foundations for Arctic education cooperation.The implementation of a new science-based Arctic treaty of the Arctic Council is an opportunity for China-U.S.Arctic education cooperation.As for future cooperation,it suggests that in addition to promoting the direct bilateral cooperation,cooperation within international cooperation platforms and mechanisms,especially within the Arctic Council also needs to be further promoted.展开更多
To investigate the spatiotemporal variations in the mixed layer depth(MLD)in the Arctic basins,a new criterion to determine the MLD,called the improved maximum angle method(IMAM),was developed.A total of 45123 potenti...To investigate the spatiotemporal variations in the mixed layer depth(MLD)in the Arctic basins,a new criterion to determine the MLD,called the improved maximum angle method(IMAM),was developed.A total of 45123 potential density profiles collected using Ice-Tethered Profilers(ITPs)in the Arctic basins during 2005-2021 were used to demonstrate the method’s effectiveness.By comparing the results obtained by the fixed threshold method(FTM),percentage threshold method(PTM),and maximum gradient method(MGM)for profiles in the Canada Basin,Makarov Basin,and Eurasian Basin,we determined that the quality index(1.0 for perfect identification of the MLD)of the IMAM regarding the assessment of the MLD determination method reached 0.94,which is much greater than those of other criteria.Moreover,two types of the density profiles were identified based on the mixed layer development stage.The MLDs of the typical profiles determined using the IMAM were found to have better consistency with the original definition.By utilizing the new mixed layer criterion,the seasonal variations and regional differences in the MLD in the Arctic basins were analyzed.Spatially,the summer and winter MLDs in the Canada Basin were the shallowest(13.55 m in summer,26.76 m in winter)than those in the Makarov(29.51 m in summer,49.08 m in winter)and Eurasian(20.36 m in summer,46.81 m in winter)basins due to the stable stratification in the upper ocean and the subsequent small effects of dynamic and thermodynamic processes(wind-driven stirring and brine rejection)in the Canada Basin.Seasonally,in the three Arctic basins,the average MLD was shallowest(22.77 m)in summer;it deepened through autumn and reached a winter maximum(41.12 m).展开更多
以北极研究为中心,基于CNKI和Web of Sciences Core Collection数据库2000—2017数据,采用CiteSpace,系统展示了中国和国际(含中国)在北极科研领域的发展趋势、前沿、热点和机构合作特征。研究表明,国内的北极研究经历了由气候海冰—航...以北极研究为中心,基于CNKI和Web of Sciences Core Collection数据库2000—2017数据,采用CiteSpace,系统展示了中国和国际(含中国)在北极科研领域的发展趋势、前沿、热点和机构合作特征。研究表明,国内的北极研究经历了由气候海冰—航运—北极治理的研究过程,发文量以北极航运为主导。国际针对北极的研究经历了三个逐步加速阶段:1990、2000和2005,北极八国和德、英、法是北极研究的主力军。北极科技合作仍主要以国家内部合作为主,但科研机构合作频率高度爆发且出现一批以“Helmholtz Centrefor Polar and Marine Research(德国)、The Arctic University of Norway(挪威)、Aarhus University(丹麦)和KoreaPolar Research Institute(韩国)”为代表的北极研究合作爆发单位;北极研究领域多样,呈现出以“arcticocean”、“climate”、“arctic temperature”、“variability”、“sea ice”、“model”等为重点的关键词,表明近年国际北极研究主要热点在气候变化、海冰、洋流等领域,这些领域相互交叉。通过对国内外北极通航经济性的系统综述分析得出:国内外学者均认为与北极海冰有关因素是制约北极通航的关键;国内学者对北极通航的经济效益较为乐观,而国外学者则较为辨证且谨慎。这与研究所考虑的角度有关,国内学者较多考虑北极通航的技术管理、人力资源、能耗、时间和政治等因素,而国外学者在这些因素的基础上,还侧重于贸易需求、通航意愿性和通航对气候的影响等因素。展开更多
基金partly supported by the Russian Ministry of Science and Higher Education (Agreement No.075-15-2021-577)the Russian Science Foundation (Grant No.23-47-00104)+2 种基金funded by the Research Council of Norway (Grant No.Combined 328935)the support of the Bjerknes Climate Prediction Unit with funding from the Trond Mohn Foundation (Grant No.BFS2018TMT01)the support of the National Natural Science Foundation of China (Grant No.42261134532)。
文摘The shrinking Arctic sea-ice area(SIA) in recent decades is a striking manifestation of the ongoing climate change.Variations of the Arctic sea ice have been continuously observed by satellites since 1979, relatively well monitored since the 1950s, but are highly uncertain in the earlier period due to a lack of observations. Several reconstructions of the historical gridded sea-ice concentration(SIC) data were recently presented based on synthesized regional sea-ice observations or by applying a hybrid model–empirical approach. Here, we present an SIC reconstruction for the period1901–2019 based on established co-variability between SIC and surface air temperature, sea surface temperature, and sea level pressure patterns. The reconstructed sea-ice data for March and September are compared to the frequently used Had ISST1.1 and SIBT1850 datasets. Our reconstruction shows a large decrease in SIA from the 1920 to 1940 concurrent with the Early 20th Century Warming event in the Arctic. Such a negative SIA anomaly is absent in Had ISST1.1 data. The amplitude of the SIA anomaly reaches about 0.8 mln km^(2) in March and 1.5 mln km^(2) in September. The anomaly is about three times stronger than that in the SIBT1850 dataset. The larger decrease in SIA in September is largely due to the stronger SIC reduction in the western sector of the Arctic Ocean in the 70°–80°N latitudinal zone. Our reconstruction provides gridded monthly data that can be used as boundary conditions for atmospheric reanalyses and model experiments to study the Arctic climate for the first half of the 20th century.
基金supported by the National Key Research and Development Program(Grant nos.2022YFC2807203,2022YFB2302701).
文摘The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant reduction in snow albedo and accelerate melting of snow and ice in the Arctic.By reviewing the published literatures over the past decades,this work provides an overview of the progress in both the measurement and modeling of BC deposition and its impact on Arctic climate change.In summary,the maximum value of BC deposition appears in the western Russian Arctic(26 ng·g^(–1)),and the minimum value appears in Greenland(3 ng·g^(–1)).BC records in the Arctic ice core already peaked in 1920s and 1970s,and shows a regional difference between Greenland and Canadian Arctic.The different temporal variations of Arctic BC ice core records in different regions are closely related to the large variability of BC emissions and transportation processes across the Arctic region.Model simulations usually underestimate the concentration of BC in snow and ice by 2–3 times,and cannot accurately reflect the seasonal and regional changes in BC deposition.Wet deposition is the main removal mechanism of BC in the Arctic,and observations show different seasonal variations in BC wet deposition in Ny-Ålesund and Barrow.This discrepancy may result from varying contributions of anthropogenic and biomass burning(BB)emissions,given the strong influence by BC from BB emissions at Barrow.Arctic BC deposition significantly influences regional climate change in the Arctic,increasing fire activities in the Arctic have made BB source of Arctic BC more crucial.On average,BC in Arctic snow and ice causes an increase of+0.17 W·m^(–2)in radiative forcing and 8 Gt·a^(–1)in runoff in Greenland.As stressed in the latest Arctic Monitoring and Assessment Programme report,reliable source information and long-term and high-resolution observations on Arctic BC deposition will be crucial for a more comprehensive understanding and a better mitigation strategy of Arctic BC.In the future,it is necessary to collect more observations on BC deposition and the corresponding physical processes(e.g.,snow/ice melting,surface energy balance)in the Arctic to provide reliable data for understanding and clarifying the mechanism of the climatic impacts of BC deposition on Arctic snow and ice.
基金the Nord Forsk-funded Nordic Centre of Excellence project (Award 766654) Arctic Climate Predictions: Pathways to Resilient,Sustainable Societies (ARCPATH)National Science Foundation Award 212786 Synthesizing Historical Sea-Ice Records to Constrain and Understand Great Sea-Ice Anomalies (ICEHIST) PI Martin MILES,Co-PI Astrid OGILVIE+12 种基金American-Scandinavian Foundation Award Whales and Ice: Marine-mammal subsistence use in times of famine in Iceland ca.A.D.1600–1900 (ICEWHALE),PI Astrid OGILVIESocial Sciences and Humanities Research Council of Canada Award 435-2018-0194 Northern Knowledge for Resilience,Sustainable Environments and Adaptation in Coastal Communities (NORSEACC),PI Leslie KING,Co-PI,Astrid OGILVIEToward Just,Ethical and Sustainable Arctic Economies,Environments and Societies (JUSTNORTH).EU H2020 (https://www.svs.is/en/ projects/ongoing-projects/justnorth-2020-2023)INTO THE OCEANIC by Elizabeth OGILVIE and Robert PAGE (https://www.intotheo ceanic.org/introduction)Proxy Assimilation for Reconstructing Climate and Improving Model (PARCIM) funded by the Bjerknes Centre for Climate Research,led by Fran?ois COUNILLON,PI Noel KEENLYSIDEAccelerated Arctic and Tibetan Plateau Warming: Processes and Combined Impact on Eurasian Climate (COMBINED),Research Council of Norway (Grant No.328935),Led by Noel KEENLYSIDEArven etter Nansen programme (the Nansen Legacy Project),Research Council of Norway (Grant No.276730),PI Noel KEENLYSIDEBjerknes Climate Prediction Unit,funded by Trond Mohn Foundation (Grant BFS2018TMT01) Centre for Research-based Innovation Climate Futures,Research Council of Norway (Grant No.309562),PIs Noel KEENLYSIDE,Francois COUNILLONDeveloping and Advancing Seasonal Predictability of Arctic Sea Ice (4ICE),Research Council of Norway (Grant No.254765),PI Francois COUNILLONTropical and South Atlantic Climate-Based Marine Ecosystem Prediction for Sustainable Management (TRIATLAS) European Union Horizon 2020 (Grant No.817578),led by Noel KEENLYSIDE,PI Fran?ois COUNILLONImpetus4Change,European Union Horizon Europe (Grant No.101081555),PIs Noel KEENLYSIDE,Fran?ois COUNILLONLaboratory for Climate Predictability,Russian Megagrant funded by Ministry of Science and Higher Education of the Russian Federation (Agreement No.075-15-2021-577),led by Noel KEENLYSIDE,PI Segey GULEVRapid Arctic Environmental Changes: Implications for Well-Being,Resilience and Evolution of Arctic Communities (RACE),Belmont Forum (RCN Grant No.312017),PIs Sergey GULEV and Noel KEENLYSIDE。
文摘This paper celebrates Professor Yongqi GAO's significant achievement in the field of interdisciplinary studies within the context of his final research project Arctic Climate Predictions: Pathways to Resilient Sustainable Societies-ARCPATH(https://www.svs.is/en/projects/finished-projects/arcpath). The disciplines represented in the project are related to climatology, anthropology, marine biology, economics, and the broad spectrum of social-ecological studies. Team members were drawn from the Nordic countries, Russia, China, the United States, and Canada. The project was transdisciplinary as well as interdisciplinary as it included collaboration with local knowledge holders. ARCPATH made significant contributions to Arctic research through an improved understanding of the mechanisms that drive climate variability in the Arctic. In tandem with this research, a combination of historical investigations and social, economic, and marine biological fieldwork was carried out for the project study areas of Iceland, Greenland, Norway, and the surrounding seas, with a focus on the joint use of ocean and sea-ice data as well as social-ecological drivers. ARCPATH was able to provide an improved framework for predicting the near-term variation of Arctic climate on spatial scales relevant to society, as well as evaluating possible related changes in socioeconomic realms. In summary, through the integration of information from several different disciplines and research approaches, ARCPATH served to create new and valuable knowledge on crucial issues, thus providing new pathways to action for Arctic communities.
基金The Chinese Academy of Sciences(CAS)Key Deployment Project of Centre for Ocean Mega-Research of Science under contract No.COMS2020Q07the Open Fund Project of Key Laboratory of Marine Environmental Information Technology,Ministry of Natural Resourcesthe National Natural Science Foundation of China under contract No.41901133.
文摘Arctic sea ice is broadly regarded as an indicator and amplifier of global climate change.The rapid changes in Arctic sea ice have been widely concerned.However,the spatiotemporal changes in the horizontal and vertical dimensions of Arctic sea ice and its asymmetry during the melt and freeze seasons are rarely quantified simultaneously based on multiple sources of the same long time series.In this study,the spatiotemporal variation and freeze-thaw asymmetry of Arctic sea ice were investigated from both the horizontal and vertical dimensions during 1979–2020 based on remote sensing and assimilation data.The results indicated that Arctic sea ice was declining at a remarkably high rate of–5.4×10^(4) km^(2)/a in sea ice area(SIA)and–2.2 cm/a in sea ice thickness(SIT)during 1979 to 2020,and the reduction of SIA and SIT was the largest in summer and the smallest in winter.Spatially,compared with other sub-regions,SIA showed a sharper declining trend in the Barents Sea,Kara Sea,and East Siberian Sea,while SIT presented a larger downward trend in the northern Canadian Archipelago,northern Greenland,and the East Siberian Sea.Regarding to the seasonal trend of sea ice on sub-region scale,the reduction rate of SIA exhibited an apparent spatial heterogeneity among seasons,especially in summer and winter,i.e.,the sub-regions linked to the open ocean exhibited a higher decline rate in winter;however,the other sub-regions blocked by the coastlines presented a greater decline rate in summer.For SIT,the sub-regions such as the Beaufort Sea,East Siberian Sea,Chukchi Sea,Central Arctic,and Canadian Archipelago always showed a higher downward rate in all seasons.Furthermore,a striking freeze-thaw asymmetry of Arctic sea ice was also detected.Comparing sea ice changes in different dimensions,sea ice over most regions in the Arctic showed an early retreat and rapid advance in the horizontal dimension but late melting and gradual freezing in the vertical dimension.The amount of sea ice melting and freezing was disequilibrium in the Arctic during the considered period,and the rate of sea ice melting was 0.3×10^(4) km^(2)/a and 0.01 cm/a higher than that of freezing in the horizontal and vertical dimensions,respectively.Moreover,there were notable shifts in the melting and freezing of Arctic sea ice in 1997/2003 and 2000/2004,respectively,in the horizontal/vertical dimension.
基金supported by the National Key Research and Development Program of China (Grant no.2021YFB3900105)the support from the Fundamental Research Funds for the Central Universitiesthe support by the National Key Research and Development Program of China (Grant no.2017YFA0603100).
文摘The Antarctic Ice Sheet harbors more than 90%of the Earth ice mass,with significant losses experienced through dynamic thinning,particularly in West Antarctica.The crucial aspect of investigating ice mass balance in historical periods preceding 1990 hinges on the utilization of ice velocities derived from optical satellite images.We employed declassified satellite images and Landsat images with normalized cross correlation based image matching,adopting an adaptive combination of skills and methods to overcome challenges encountered during the mapping of historical ice velocity in West Antarctica.A basin-wide synthesis velocity map encompassing the coastal regions of most large-scale glaciers and ice shelves in West Antarctica has already been successfully generated.Our results for historical ice velocities cover over 70%of the grounding line in most of the West Antarctic basins.Through adjustments,we uncovered overestimations in ice velocity measurements over an extended period,transforming our ice velocity map into a spatially deterministic,temporally average version.Among all velocity measurements,Thwaites Glacier exhibited a notable spatial variation in the fastest ice flowline and velocity distribution.Overestimation distributions on Thwaites Glacier displayed a clear consistency with the positions of subsequent front calving events,offering insights into the instabilities of ice shelves.
基金supported by the 2021 Youth Research Fund Project“Research on Legal Issues of Protection of China’s Rights and Interests in the Antarctic under the Background of Momentous Changes of a Like Not Seen in a Century”of Shanghai University of Political Science and Law(Grant no.2021XQN27)the 2020 Research Fund Project“Indian Polar Policy Research”of China National Institute for SCO International Exchange and Judicial Cooperation(Grant no.20SHJD027)the China Association of Marine Affairs(CAMA)Project“Key Issues in the Exploitation and Utilization of Polar Biological Resources under the New Situation”(Grant no.CODF-AOC202301).
文摘Arctic education refers not only to the teaching,but also to research,communication,dissemination as well as popularization of knowledge related to the Arctic.This article reviews joint efforts between Chinese and American educators and researchers to promote cooperation and understanding in Arctic education and research,and examines the facing challenges of China-U.S.Arctic education cooperation which include current political or economic tensions between the two countries,the differing perspectives and priorities on Arctic policy,the disproportion in Arctic scientific research,different research methodologies and discourse system in social science.This article also argues that there are opportunities for the two countries to cooperate in Arctic education.Common goals and interests in the Arctic,Arctic-dedicated institutions with significant Arctic research capabilities and partnerships around the world provide foundations for Arctic education cooperation.The implementation of a new science-based Arctic treaty of the Arctic Council is an opportunity for China-U.S.Arctic education cooperation.As for future cooperation,it suggests that in addition to promoting the direct bilateral cooperation,cooperation within international cooperation platforms and mechanisms,especially within the Arctic Council also needs to be further promoted.
基金Supported by the National Key R&D Program of China(Nos.2018 YFA 0605903,2019 YFC 1509101)the National Natural Science Foundation of China(No.41976218)the Fundamental Research Funds for the Central Universities(No.202165005)。
文摘To investigate the spatiotemporal variations in the mixed layer depth(MLD)in the Arctic basins,a new criterion to determine the MLD,called the improved maximum angle method(IMAM),was developed.A total of 45123 potential density profiles collected using Ice-Tethered Profilers(ITPs)in the Arctic basins during 2005-2021 were used to demonstrate the method’s effectiveness.By comparing the results obtained by the fixed threshold method(FTM),percentage threshold method(PTM),and maximum gradient method(MGM)for profiles in the Canada Basin,Makarov Basin,and Eurasian Basin,we determined that the quality index(1.0 for perfect identification of the MLD)of the IMAM regarding the assessment of the MLD determination method reached 0.94,which is much greater than those of other criteria.Moreover,two types of the density profiles were identified based on the mixed layer development stage.The MLDs of the typical profiles determined using the IMAM were found to have better consistency with the original definition.By utilizing the new mixed layer criterion,the seasonal variations and regional differences in the MLD in the Arctic basins were analyzed.Spatially,the summer and winter MLDs in the Canada Basin were the shallowest(13.55 m in summer,26.76 m in winter)than those in the Makarov(29.51 m in summer,49.08 m in winter)and Eurasian(20.36 m in summer,46.81 m in winter)basins due to the stable stratification in the upper ocean and the subsequent small effects of dynamic and thermodynamic processes(wind-driven stirring and brine rejection)in the Canada Basin.Seasonally,in the three Arctic basins,the average MLD was shallowest(22.77 m)in summer;it deepened through autumn and reached a winter maximum(41.12 m).
文摘以北极研究为中心,基于CNKI和Web of Sciences Core Collection数据库2000—2017数据,采用CiteSpace,系统展示了中国和国际(含中国)在北极科研领域的发展趋势、前沿、热点和机构合作特征。研究表明,国内的北极研究经历了由气候海冰—航运—北极治理的研究过程,发文量以北极航运为主导。国际针对北极的研究经历了三个逐步加速阶段:1990、2000和2005,北极八国和德、英、法是北极研究的主力军。北极科技合作仍主要以国家内部合作为主,但科研机构合作频率高度爆发且出现一批以“Helmholtz Centrefor Polar and Marine Research(德国)、The Arctic University of Norway(挪威)、Aarhus University(丹麦)和KoreaPolar Research Institute(韩国)”为代表的北极研究合作爆发单位;北极研究领域多样,呈现出以“arcticocean”、“climate”、“arctic temperature”、“variability”、“sea ice”、“model”等为重点的关键词,表明近年国际北极研究主要热点在气候变化、海冰、洋流等领域,这些领域相互交叉。通过对国内外北极通航经济性的系统综述分析得出:国内外学者均认为与北极海冰有关因素是制约北极通航的关键;国内学者对北极通航的经济效益较为乐观,而国外学者则较为辨证且谨慎。这与研究所考虑的角度有关,国内学者较多考虑北极通航的技术管理、人力资源、能耗、时间和政治等因素,而国外学者在这些因素的基础上,还侧重于贸易需求、通航意愿性和通航对气候的影响等因素。