Understanding gene expression variations between species is pivotal for deciphering the evolutionary diversity in phenotypes. Rhesus macaques(Macaca mulatta, MMU)and crab-eating macaques(M. fascicularis, MFA) serve as...Understanding gene expression variations between species is pivotal for deciphering the evolutionary diversity in phenotypes. Rhesus macaques(Macaca mulatta, MMU)and crab-eating macaques(M. fascicularis, MFA) serve as crucial nonhuman primate biomedical models with different phenotypes. To date, however, large-scale comparative transcriptome research between these two species has not yet been fully explored. Here, we conducted systematic comparisons utilizing newly sequenced RNA-seq data from84 samples(41 MFA samples and 43 MMU samples)encompassing 14 common tissues. Our findings revealed a small fraction of genes(3.7%) with differential expression between the two species, as well as 36.5% of genes with tissue-specific expression in both macaques. Comparison of gene expression between macaques and humans indicated that 22.6% of orthologous genes displayed differential expression in at least two tissues. Moreover,19.41% of genes that overlapped with macaque-specific structural variants showed differential expression between humans and macaques. Of these, the FAM220A gene exhibited elevated expression in humans compared to macaques due to lineage-specific duplication. In summary,this study presents a large-scale transcriptomic comparison between MMU and MFA and between macaques and humans. The discovery of gene expression variations not only enhances the biomedical utility of macaque models but also contributes to the wider field of primate genomics.展开更多
目的探讨自身免疫性甲状腺炎伴发抑郁症动物模型的制备与评价,并基于NOD样受体蛋白-3(NOD-like receptor protein 3,NLRP3)/含半胱氨酸的天冬氨酸蛋白水解酶-1(cysteinyl aspartate specific proteinase-1,Caspase-1)/消皮素D(gasdermin...目的探讨自身免疫性甲状腺炎伴发抑郁症动物模型的制备与评价,并基于NOD样受体蛋白-3(NOD-like receptor protein 3,NLRP3)/含半胱氨酸的天冬氨酸蛋白水解酶-1(cysteinyl aspartate specific proteinase-1,Caspase-1)/消皮素D(gasdermin D,GSDMD)通路加以验证。方法32只NOD.H-2H4小鼠随机分为正常组(N组)、抑郁组(DP组)、自身免疫性甲状腺炎伴抑郁症组(AIT+DP组)、自身免疫性甲状腺炎组(AIT组),每组8只。N组正常饲养,DP组采取5周慢性不可预知温和刺激(chronic unpredictable mild stress,CUMS),AIT组予0.05%碘化钠水溶液建立自身免疫性甲状腺炎模型,AIT+DP组在建立AIT动物模型基础上施加5周CUMS建立AIT+DP动物模型。通过观测小鼠甲状腺组织结构及淋巴细胞浸润情况和血清甲状腺过氧化物酶抗体(thyroid peroxidase antibody,TPOAb)和甲状腺球蛋白抗体(anti-thyroid autoantibodies,TGAb)水平评价小鼠自身免疫性甲状腺炎模型是否制备成功;通过测定体重、糖水偏好率、旷场行为学(中央象限时间、中央象限比例、站立次数、排便次数、毛发梳理时间),大脑皮质、海马病理变化及大脑皮质小胶质细胞焦亡相关蛋白水平评价小鼠抑郁状态。模型小鼠同时符合上述自身免疫性甲状腺炎与抑郁症相关指标检测,则表明AIT+DP动物模型制备成功。结果与N组比较,AIT组与AIT+DP组血清TGAb、TPOAb水平显著增加(P<0.01),甲状腺可见大量炎细胞浸润,DP组与AIT+DP组小鼠中央象限时间、中央象限比例、站立次数、排便次数、毛发梳理时间有不同程度降低,大脑皮质神经胶质细胞增多,神经元细胞减少,伴有部分细胞核萎缩,NLRP3、IL-1β、Caspase-1、GSDMD-N蛋白表达水平显著上调,AIT+DP组尤为明显(P<0.01)。结论0.05%碘化钠水溶液与CUMS可较好地模拟AIT+DP模型动物外在表现与内在指标变化,可为AIT+DP疾病的研究提供动物模型参考。展开更多
PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can l...PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease.However,there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration.Additionally,PINK1 knockout pigs(Sus scrofa)do not appear to exhibit neurodegeneration.In our recent work involving non-human primates,we found that PINK1 is selectively expressed in primate brains,while absent in rodent brains.To extend this to other species,we used multiple antibodies to examine the expression of PINK1 in pig tissues.In contrast to tissues from cynomolgus monkeys(Macaca fascicularis),our data did not convincingly demonstrate detectable PINK1expression in pig tissues.Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation,as observed in cultured monkey cells.A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain.Consistently,PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD.These findings provide new evidence that PINK1expression is specific to primates,underscoring the importance of non-human primates in investigating PINK1function and pathology related to PINK1 deficiency.展开更多
基金supported by the National Natural Science Foundation of China (82021001 and 31825018 to Q.S., 32370658 to Y.M.,82001372 to X.Y.)National Key Research and Development Program of China (2022YFF0710901)+2 种基金National Science and Technology Innovation2030 Major Program (2021ZD0200900) to Q.S.Shanghai Pujiang Program (22PJ1407300)Shanghai Jiao Tong University 2030 Initiative (WH510363001-7) to Y.M。
文摘Understanding gene expression variations between species is pivotal for deciphering the evolutionary diversity in phenotypes. Rhesus macaques(Macaca mulatta, MMU)and crab-eating macaques(M. fascicularis, MFA) serve as crucial nonhuman primate biomedical models with different phenotypes. To date, however, large-scale comparative transcriptome research between these two species has not yet been fully explored. Here, we conducted systematic comparisons utilizing newly sequenced RNA-seq data from84 samples(41 MFA samples and 43 MMU samples)encompassing 14 common tissues. Our findings revealed a small fraction of genes(3.7%) with differential expression between the two species, as well as 36.5% of genes with tissue-specific expression in both macaques. Comparison of gene expression between macaques and humans indicated that 22.6% of orthologous genes displayed differential expression in at least two tissues. Moreover,19.41% of genes that overlapped with macaque-specific structural variants showed differential expression between humans and macaques. Of these, the FAM220A gene exhibited elevated expression in humans compared to macaques due to lineage-specific duplication. In summary,this study presents a large-scale transcriptomic comparison between MMU and MFA and between macaques and humans. The discovery of gene expression variations not only enhances the biomedical utility of macaque models but also contributes to the wider field of primate genomics.
基金supported by the National Natural Science Foundation of China (32070534,32370567,82371874,81830032,31872779,82071421,81873736)Key Field Research and Development Program of Guangdong Province (2018B030337001)+3 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006)Guangdong Basic and Applied Basic Research Foundation (2023B1515020031,2022A1515012301)Fundamental Research Funds for the Central Universities (Jinan University,21620358)。
文摘PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease.However,there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration.Additionally,PINK1 knockout pigs(Sus scrofa)do not appear to exhibit neurodegeneration.In our recent work involving non-human primates,we found that PINK1 is selectively expressed in primate brains,while absent in rodent brains.To extend this to other species,we used multiple antibodies to examine the expression of PINK1 in pig tissues.In contrast to tissues from cynomolgus monkeys(Macaca fascicularis),our data did not convincingly demonstrate detectable PINK1expression in pig tissues.Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation,as observed in cultured monkey cells.A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain.Consistently,PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD.These findings provide new evidence that PINK1expression is specific to primates,underscoring the importance of non-human primates in investigating PINK1function and pathology related to PINK1 deficiency.