目的分析多参数磁共振成像(magnetic resonance imaging,MRI)组学列线图模型治疗前预测子宫内膜样腺癌(endometrial endometrioid adenocarcinoma,EEA)淋巴血管间隙侵犯(lymphovascular space invasion,LVSI)的可行性及价值。方法于2020...目的分析多参数磁共振成像(magnetic resonance imaging,MRI)组学列线图模型治疗前预测子宫内膜样腺癌(endometrial endometrioid adenocarcinoma,EEA)淋巴血管间隙侵犯(lymphovascular space invasion,LVSI)的可行性及价值。方法于2020年10月至2022年1月在复旦大学附属妇产科医院前瞻性收集205例EEA临床及MRI资料,按6∶4随机分为训练集(n=123)和验证集(n=82)。分别在T2加权成像、扩散加权成像(表观扩散系数图)及动态增强MRI序列勾画全肿瘤体积感兴趣区提取肿瘤影像组学特征。在训练集中,采用单变量分析及多变量Logistic回归分析筛选LVSI的独立预测因子,建立临床预测模型;采用最小绝对收缩和选择算法(least absolute shrinkage and selection operator,LASSO)进行特征筛选并建立影像组学标签;采用临床独立预测因子与组学标签构建临床-MRI组学列线图模型,并在验证集中进行模型验证。使用受试者操作特征曲线下面积(area under the receiver operating characteristic curve,AUC)评估模型效能,临床决策曲线评估模型临床应用价值。结果205例EEA中,LVSI(-)144例,LVSI(+)61例。患者绝经状态、CA125及CA199为LVSI(+)的临床独立预测因子,三者联合组成的临床预测模型AUC为0.714(训练集)和0.731(验证集)。从多参数MRI图像中共提取的8240个影像组学特征中筛选出5个最佳特征构建MRI组学标签,AUC为0.860(训练集)和0.759(验证集)。临床-MRI组学列线图模型AUC为0.887(训练集)和0.807(验证集),优于单独的临床模型及组学模型,且在较大的阈值概率范围内临床-MRI组学列线图模型可获得更大的临床净收益。结论基于多参数MRI组学的列线图模型可在治疗前有效预测EEA的LVSI状态,为临床管理决策提供有价值的参考,提高患者的临床获益。展开更多
文摘目的分析多参数磁共振成像(magnetic resonance imaging,MRI)组学列线图模型治疗前预测子宫内膜样腺癌(endometrial endometrioid adenocarcinoma,EEA)淋巴血管间隙侵犯(lymphovascular space invasion,LVSI)的可行性及价值。方法于2020年10月至2022年1月在复旦大学附属妇产科医院前瞻性收集205例EEA临床及MRI资料,按6∶4随机分为训练集(n=123)和验证集(n=82)。分别在T2加权成像、扩散加权成像(表观扩散系数图)及动态增强MRI序列勾画全肿瘤体积感兴趣区提取肿瘤影像组学特征。在训练集中,采用单变量分析及多变量Logistic回归分析筛选LVSI的独立预测因子,建立临床预测模型;采用最小绝对收缩和选择算法(least absolute shrinkage and selection operator,LASSO)进行特征筛选并建立影像组学标签;采用临床独立预测因子与组学标签构建临床-MRI组学列线图模型,并在验证集中进行模型验证。使用受试者操作特征曲线下面积(area under the receiver operating characteristic curve,AUC)评估模型效能,临床决策曲线评估模型临床应用价值。结果205例EEA中,LVSI(-)144例,LVSI(+)61例。患者绝经状态、CA125及CA199为LVSI(+)的临床独立预测因子,三者联合组成的临床预测模型AUC为0.714(训练集)和0.731(验证集)。从多参数MRI图像中共提取的8240个影像组学特征中筛选出5个最佳特征构建MRI组学标签,AUC为0.860(训练集)和0.759(验证集)。临床-MRI组学列线图模型AUC为0.887(训练集)和0.807(验证集),优于单独的临床模型及组学模型,且在较大的阈值概率范围内临床-MRI组学列线图模型可获得更大的临床净收益。结论基于多参数MRI组学的列线图模型可在治疗前有效预测EEA的LVSI状态,为临床管理决策提供有价值的参考,提高患者的临床获益。