由于果蔬采摘环境的不确定性和复杂性,机械臂在复杂环境中完成采摘,其路径规划需考虑实时避障。为实现采摘机械臂在不确定环境下安全采摘,提出一种改进RRT的动态避障算法,以提升机械臂在不确定采摘环境的适应性。针对基本快速扩展随机...由于果蔬采摘环境的不确定性和复杂性,机械臂在复杂环境中完成采摘,其路径规划需考虑实时避障。为实现采摘机械臂在不确定环境下安全采摘,提出一种改进RRT的动态避障算法,以提升机械臂在不确定采摘环境的适应性。针对基本快速扩展随机树算法(Rapidly-exploring Random Trees,RRT)在动态环境下迭代时间长、路径长、适应性差等问题,在RRT算法的基础上,引入目标导向策略,把终点以一定概率作为随机采样点的采样方向,提高算法的迭代效率;引入动态检测机制,对已完成规划的初始路径进行实时检测,使算法适应动态变化的环境。通过仿真分析改进RRT算法,结果表明:改进RRT算法的路径减少16%,迭代时间缩短86.5%;同时,动态检测机制使算法适应动态环境。展开更多
文摘由于果蔬采摘环境的不确定性和复杂性,机械臂在复杂环境中完成采摘,其路径规划需考虑实时避障。为实现采摘机械臂在不确定环境下安全采摘,提出一种改进RRT的动态避障算法,以提升机械臂在不确定采摘环境的适应性。针对基本快速扩展随机树算法(Rapidly-exploring Random Trees,RRT)在动态环境下迭代时间长、路径长、适应性差等问题,在RRT算法的基础上,引入目标导向策略,把终点以一定概率作为随机采样点的采样方向,提高算法的迭代效率;引入动态检测机制,对已完成规划的初始路径进行实时检测,使算法适应动态变化的环境。通过仿真分析改进RRT算法,结果表明:改进RRT算法的路径减少16%,迭代时间缩短86.5%;同时,动态检测机制使算法适应动态环境。