期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进层次样本熵和极限学习机的离心泵故障诊断方法
1
作者 王卫玉 赵训新 +3 位作者 魏加达 陈飞 王斌 陈帝伊 《排灌机械工程学报》 CSCD 北大核心 2024年第9期872-880,共9页
为了提高离心泵早期故障诊断模型的准确性,提出一种改进层次样本熵(improved hierarchical sample entropy,IHSE)和极限学习机(extreme learning machine,ELM)相结合的离心泵故障诊断方法.首先,针对传统分层样本熵在高层次下算法稳定性... 为了提高离心泵早期故障诊断模型的准确性,提出一种改进层次样本熵(improved hierarchical sample entropy,IHSE)和极限学习机(extreme learning machine,ELM)相结合的离心泵故障诊断方法.首先,针对传统分层样本熵在高层次下算法稳定性弱的问题,利用移动平均和移动差分过程代替传统的分层模式,提出一种新的评估时序信号复杂性工具——IHSE;然后,利用IHSE提取离心泵振动信号的故障特征;最后,将故障特征输入ELM模型,实现离心泵不同运行状态的有效识别.研究结果表明:所提方法在2个不同类型离心泵故障数据集上的诊断率分别为99.58%和99.68%,在所有诊断模型中表现最佳,表明该方法具有良好的诊断性能.研究结果为离心泵故障诊断提供了一种新的方法,具有良好的参考价值与应用前景. 展开更多
关键词 离心泵 故障诊断 样本熵 特征提取 极限学习机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部